98%
921
2 minutes
20
Functioning as miRNA sponges, long non-coding RNA (lncRNA) exert its pharmacological action via regulating expression of protein-coding genes. However, the lncRNA-mediated ceRNA in cerebral Infarction (CI) remains unclear. In this study, the expression recordsets of mRNA, lncRNA and miRNA of CI samples were obtained from the NCBI GEO datasets separately. The differentially expressed lncRNAs (DELs), miRNAs (DEMis) and mRNAs (DEMs) were identified by limma package in R platform. A total of 267 DELs, 26 DEMis, and 760 DEMs were identified as differentially expressed profiles, with which we constructed the ceRNA network composed of DELs-DEMis-DEMs. Further, clusterProfiler package in R platform is employed for performing Gene Ontology (GO) and KEGG pathway analysis. An aberrant ceRNA network was constructed according to node degrees in CI, including 28 DELs, 19 DEMs and 12 DEMis, from which we extracted the core network, in which 9 nodes were recognized as kernel genes including Tspan3, Eif4a2, rno-miR-208a-3p, rno-miR-194-5p, Pdpn, H3f3b, Stat3, Cd63 and Sdc4. Finally, with the DELs-DEMis-DEMs ceRNA network provided above, we can improve our understanding of the pathogenesis of CI mediated by lncRNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704173 | PMC |
http://dx.doi.org/10.1038/s41598-019-48435-3 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Institution Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), Madrid, 28049, Spain.
Achieving magnetic ordering in low-dimensional materials remains a key objective in the field of magnetism. Herein, coordination chemistry emerges as a powerful discipline to promote the stabilization of magnetism at the nanoscale. We present a thorough study of exemplary two-dimensional metal-organic nanoarchitectures synthesized on a Au(111) substrate, which are rationalized by using surface-science techniques and theoretical calculations.
View Article and Find Full Text PDFPLoS One
September 2025
Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
Background: Disulfidptosis, a novel cellular death manner, has yet to be fully explored within the context of pulmonary arterial hypertension (PAH). This study aims to identify genes implicated in PAH that are involved in disulfidptosis.
Method: Based on data from the GEO database, this study employed co-expression analysis, Weighted Gene Co-Expression Network Analysis (WGCNA), hub gene identification, and Gene Set Enrichment Analysis (GSEA) to uncover genes associated with PAH and disulfidptosis.
Exp Clin Endocrinol Diabetes
August 2025
Department of Endocrinology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.
Painful diabetic neuropathy (PDN), a severe microvascular complication of diabetes, is closely associated with neuroinflammation. This study aimed to investigate the mechanism of circ_0002590 in neuroinflammation associated with PDN.The Schwann cells (HEI193) were treated with high glucose (HG, 150 mM) to simulate the diabetic microenvironment.
View Article and Find Full Text PDFRep Pract Oncol Radiother
August 2025
Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.
Initially, pseudogenes were considered to be "junk DNA", and their biological role was unclear. However, some of the pseudogenes are engaged in the process of cancerogenesis and perform essential functions in competing for endogenous ribonucleic acid (ceRNA) networks and competing for RNA binding proteins (RBPs). They either positively or negatively regulate gene expression and act as suppressive and oncogenic transcripts.
View Article and Find Full Text PDFExp Cell Res
September 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City 610041, China. Electronic address:
Adipose-derived mesenchymal stem cells (ADSCs) hold great promise for bone tissue repair and regeneration. Circular RNAs (circRNAs) play a crucial role in regulating the osteogenic differentiation and bone remodeling of ADSCs; however, the underlying molecular mechanisms remain unclear. In this study, we conducted whole transcriptome sequencing (WTS) on ADSCs and constructed a competing endogenous RNA (ceRNA) regulatory network to identify the circTTC3/miR-205/mothers against decapentaplegic homolog 3 (Smad3) signaling axis.
View Article and Find Full Text PDF