Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial meningitis is a serious life threatening infection of the CNS. To cause meningitis, blood-borne bacteria need to interact with and penetrate brain endothelial cells (BECs) that comprise the blood-brain barrier. BECs help maintain brain homeostasis and they possess an array of efflux transporters, such as P-glycoprotein (P-gp), that function to efflux potentially harmful compounds from the CNS back into the circulation. Oftentimes, efflux also serves to limit the brain uptake of therapeutic drugs, representing a major hurdle for CNS drug delivery. During meningitis, BEC barrier integrity is compromised; however, little is known about efflux transport perturbations during infection. Thus, understanding the impact of bacterial infection on P-gp function would be important for potential routes of therapeutic intervention. To this end, the meningeal bacterial pathogen, Streptococcus agalactiae, was found to inhibit P-gp activity in human induced pluripotent stem cell-derived BECs, and live bacteria were required for the observed inhibition. This observation was correlated to decreased P-gp expression both in vitro and during infection in vivo using a mouse model of bacterial meningitis. Given the impact of bacterial interactions on P-gp function, it will be important to incorporate these findings into analyses of drug delivery paradigms for bacterial infections of the CNS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704684PMC
http://dx.doi.org/10.1186/s12987-019-0146-5DOI Listing

Publication Analysis

Top Keywords

p-gp function
12
streptococcus agalactiae
8
brain endothelial
8
endothelial cells
8
bacterial meningitis
8
drug delivery
8
impact bacterial
8
bacterial
6
p-gp
5
agalactiae disrupts
4

Similar Publications

Developing Potent Therapeutics for Liver Cancer Chemoresistance via an RNA Nanotech and Series-Circuit-Christmas-Bulb Mechanism Targeting ABC Transporters.

Mol Pharm

September 2025

Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.

Liver cancer, particularly hepatocellular carcinoma (HCC), poses significant treatment challenges due to chemoresistance and cancer recurrence. Similar to customs at the border, the liver detoxifies incoming chemicals via efflux pumps and overexpresses ATP-binding cassette (ABC) drug exporters, leading to chemoresistance. ABC contains a multihomosubunit structure and a revolving transport mechanism, actively effluxing drugs from cancer cells, thereby reducing intracellular drug accumulation and therapeutic efficacy.

View Article and Find Full Text PDF

P-glycoprotein (P-gp) is a transmembrane protein widely involved in the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of drugs within the human body. Accurate prediction of P-gp inhibitors and substrates is crucial for drug discovery and toxicological assessment. However, existing models rely on limited molecular information, leading to suboptimal model performance for predicting P-gp inhibitors and substrates.

View Article and Find Full Text PDF

The overexpression of P-glycoprotein (P-gp) has been recognized as a pivotal factor contributing to the emergence of multidrug resistance (MDR), a phenomenon that frequently limits the efficacy of chemotherapy and profoundly impacts patient prognosis. Consequently, the inhibition of P-gp's efflux function has become a critical therapeutic strategy for overcoming drug resistance and enhancing chemotherapeutic efficacy. In recent years, the development of P-gp inhibitors has garnered significant attention, particularly with the frequent incorporation of heterocyclic derivatives, which exhibit exceptional biological activity and favorable chemical properties, into drug design.

View Article and Find Full Text PDF

Tigliane glycosides from Euphorbia tirucalli as multidrug resistance modulators.

Bioorg Chem

September 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China. Electronic address:

Chemical investigation of the twigs and leaves of Euphorbia tirucalli afforded six undescribed tigliane glycosides, tirucalosides A-F (1-6), together with 12 known diterpenoids (7-18). Compound 1 represents a rare carbon skeleton bearing a 5/7/5/4-fused ring system, while compound 6 contains an unusual seco-glucoside substitution. Their structures were determined by a combination of an extensive spectroscopic analysis and acid hydrolysis experiment.

View Article and Find Full Text PDF

Vancomycin is the first-line treatment for infection, and high plasma concentration can cause nephrotoxicity. The aim of the study was to determine the correlation between intracellular vancomycin concentration and HK-2 cytotoxicity and explore omeprazole's protective effect. The activity of HK-2 cells was detected, HPLC method was established and verified, and the vancomycin concentrations in the intracellular and extracellular fluids of HK-2 cells were determined.

View Article and Find Full Text PDF