The blood-brain barrier (BBB), formed by specialized endothelial cells (ECs), regulates the extracellular composition of the central nervous system (CNS). Little is known about whether there are regional specializations of the BBB that may control the function of specific neural circuits. We use single cell RNA-seq to characterize ECs from nine CNS regions in male mice: cortex, hippocampus, cerebellum, spinal cord, striatum, thalamus, hypothalamus, midbrain, and medulla/pons.
View Article and Find Full Text PDF3D brain organoids have been widely used as a tool to study human brain development and disorders. Although endothelial cells play important roles in the brain development and pathogenesis in neurological disorders, most 3D brain organoids lack inherent endothelial cells and need either the addition of endothelial cells or to be transplanted to animals to reconstitute such vascular structures, likely missing the developmental interactions of endothelial cells and other cells in the human brain. In order to reconstitute a 3D organoid mimicking the in vivo neural and endothelial cells development, we cultured iPSC-derived embryoid bodies in sequentially applied endothelial and neuronal induction media along with Matrigel embedding.
View Article and Find Full Text PDFBiomolecules
January 2025
Endothelial cells throughout the body sense blood flow, eliciting transcriptional and phenotypic responses. The brain endothelium, known as the blood-brain barrier (BBB), possesses unique barrier and transport properties, which are in part regulated by blood flow. We utilized RNA sequencing to analyze the transcriptome of primary cultured rat brain microvascular endothelial cells (BMECs), as well as three human induced pluripotent stem cell-derived models.
View Article and Find Full Text PDFThree-dimensional (3D) brain organoid cultures derived from induced pluripotent stem cells (iPSC) provide an important alternative in vitro tool for studying human brain development and pathogenesis of neurological diseases. However, the lack of incorporation of microglia in the human brain organoids is still a major hurdle for 3D models of neuroinflammation. Current approaches include either the incorporation of fully differentiated microglia into mature brain organoids or the induction of microglial differentiation from the early stage of iPSC-derived embryoid bodies (EBs).
View Article and Find Full Text PDFSepsis is the most lethal and expensive condition treated in intensive care units. Sepsis survivors frequently suffer long-term cognitive impairment, which has been linked to the breakdown of the blood-brain barrier (BBB) during a sepsis-associated "cytokine storm". Because animal models poorly recapitulate sepsis pathophysiology, human models are needed to understand sepsis-associated brain injury and to develop novel therapeutic strategies.
View Article and Find Full Text PDFBrain mural cells regulate development and function of the blood-brain barrier and control blood flow. Existing in vitro models of human brain mural cells have low expression of key mural cell genes, including . Thus, we asked whether activation of Notch3 signaling in hPSC-derived neural crest could direct the differentiation of brain mural cells with an improved transcriptional profile.
View Article and Find Full Text PDFMural cells directly contact macrophages in the dural layer of the meninges to suppress pro-inflammatory phenotypes, including antigen presentation and lymphocyte differentiation. These mechanisms represent new targets for modulating CNS immune surveillance and pathological inflammation (Min et al. 2024.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) hinders therapeutic delivery to the central nervous system (CNS), thereby impeding the development of therapies for brain injury and disease. Receptor-mediated transcytosis (RMT) systems are a promising way to shuttle a targeted therapeutic into the brain. Here, we developed and evaluated an RMT antibody-targeted liposomal system.
View Article and Find Full Text PDFBlood-brain barrier (BBB) breakdown and immune cell infiltration into the CNS are early hallmarks of multiple sclerosis (MS). The mechanisms leading to BBB dysfunction are incompletely understood and generally thought to be a consequence of neuroinflammation. Here, we have challenged this view and asked if intrinsic alterations in the BBB of MS patients contribute to MS pathogenesis.
View Article and Find Full Text PDFEndothelial cells (ECs) in the central nervous system (CNS) acquire their specialized blood-brain barrier (BBB) properties in response to extrinsic signals, with Wnt/β-catenin signaling coordinating multiple aspects of this process. Our knowledge of CNS EC development has been advanced largely by animal models, and human pluripotent stem cells (hPSCs) offer the opportunity to examine BBB development in an in vitro human system. Here, we show that activation of Wnt signaling in hPSC-derived naïve endothelial progenitors, but not in matured ECs, leads to robust acquisition of canonical BBB phenotypes including expression of GLUT-1, increased claudin-5, decreased PLVAP, and decreased permeability.
View Article and Find Full Text PDFClinical evidence suggests the central nervous system is frequently impacted by SARS-CoV-2 infection, either directly or indirectly, although the mechanisms are unclear. Pericytes are perivascular cells within the brain that are proposed as SARS-CoV-2 infection points. Here we show that pericyte-like cells (PLCs), when integrated into a cortical organoid, are capable of infection with authentic SARS-CoV-2.
View Article and Find Full Text PDFWe describe the extended endothelial cell culture method (EECM) for the differentiation of human pluripotent stem cells (hPSCs) into brain microvascular endothelial cell (BMEC)-like cells. EECM-BMEC-like cells resemble primary human BMECs in morphology, molecular junctional architecture, and diffusion barrier characteristics. A mature immune phenotype with proper endothelial adhesion molecule expression makes this model distinct from any other hPSC-derived blood-brain barrier (BBB) model and suitable to study immune cell migration across the BBB in a disease relevant and personalized fashion.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
November 2021
Brain mural cells, including pericytes and vascular smooth muscle cells, are important for vascular development, blood-brain barrier function, and neurovascular coupling, but the molecular characteristics of human brain mural cells are incompletely characterized. Single cell RNA-sequencing (scRNA-seq) is increasingly being applied to assess cellular diversity in the human brain, but the scarcity of mural cells in whole brain samples has limited their molecular profiling. Here, we leverage the combined power of multiple independent human brain scRNA-seq datasets to build a transcriptomic database of human brain mural cells.
View Article and Find Full Text PDFClinical evidence suggests the central nervous system (CNS) is frequently impacted by SARS-CoV-2 infection, either directly or indirectly, although mechanisms remain unclear. Pericytes are perivascular cells within the brain that are proposed as SARS-CoV-2 infection points . Here we show that pericyte-like cells (PLCs), when integrated into a cortical organoid, are capable of infection with authentic SARS-CoV-2.
View Article and Find Full Text PDFClinical evidence suggests the central nervous system (CNS) is frequently impacted by SARS-CoV-2 infection, either directly or indirectly, although mechanisms remain unclear. Pericytes are perivascular cells within the brain that are proposed as SARS-CoV-2 infection points . Here we show that pericyte-like cells (PLCs), when integrated into a cortical organoid, are capable of infection with authentic SARS-CoV-2.
View Article and Find Full Text PDFBrain pericytes regulate diverse aspects of neurovascular development and function, including blood-brain barrier (BBB) induction and maintenance. Primary brain pericytes have been widely employed in coculture-based in vitro models of the BBB, and a method to generate brain pericytes from human pluripotent stem cells (hPSCs) could provide a renewable, genetically tractable source of cells for BBB modeling and studying pericyte roles in development and disease. Here, we describe a protocol to differentiate hPSCs to NG2 PDGFRβ αSMA brain pericyte-like cells in 22-25 days through a p75-NGFR HNK-1 neural crest intermediate, which mimics the developmental origin of forebrain pericytes.
View Article and Find Full Text PDFHuman induced pluripotent stem cell (hiPSC)-derived blood-brain barrier (BBB) models established to date lack expression of key adhesion molecules involved in immune cell migration across the BBB in vivo. Here, we introduce the extended endothelial cell culture method (EECM), which differentiates hiPSC-derived endothelial progenitor cells to brain microvascular endothelial cell (BMEC)-like cells with good barrier properties and mature tight junctions. Importantly, EECM-BMEC-like cells exhibited constitutive cell surface expression of ICAM-1, ICAM-2, and E-selectin.
View Article and Find Full Text PDFEndothelial cells (EC) in vivo are continuously exposed to a mechanical microenvironment from blood flow, and fluidic shear stress plays an important role in EC behavior. New approaches to generate physiologically and pathologically relevant pulsatile flows are needed to understand EC behavior under different shear stress regimes. Here, we demonstrate an adaptable pump (Adapt-Pump) platform for generating pulsatile flows from human pluripotent stem cell-derived cardiac spheroids (CS) via quantitative imaging-based signal transduction.
View Article and Find Full Text PDFDrug delivery across the blood-brain barrier (BBB) remains a significant obstacle for the development of neurological disease therapies. The low penetration of blood-borne therapeutics into the brain can oftentimes be attributed to the restrictive nature of the brain microvascular endothelial cells (BMECs) that comprise the BBB. One strategy beginning to be successfully leveraged is the use of endogenous receptor-mediated transcytosis (RMT) systems as a means to shuttle a targeted therapeutic into the brain.
View Article and Find Full Text PDFThe brain vasculature maintains brain homeostasis by tightly regulating ionic, molecular, and cellular transport between the blood and the brain parenchyma. These blood-brain barrier (BBB) properties are impediments to brain drug delivery, and brain vascular dysfunction accompanies many neurological disorders. The molecular constituents of brain microvascular endothelial cells (BMECs) and pericytes, which share a basement membrane and comprise the microvessel structure, remain incompletely characterized, particularly in humans.
View Article and Find Full Text PDFActa Biomater
July 2020
Following publication of the original article [1], the author has reported that in Figure 1 (b and c) the y-axis TEER (© x cm) should be replaced with TEER (Ω x cm).
View Article and Find Full Text PDFFluids Barriers CNS
August 2019
Bacterial meningitis is a serious life threatening infection of the CNS. To cause meningitis, blood-borne bacteria need to interact with and penetrate brain endothelial cells (BECs) that comprise the blood-brain barrier. BECs help maintain brain homeostasis and they possess an array of efflux transporters, such as P-glycoprotein (P-gp), that function to efflux potentially harmful compounds from the CNS back into the circulation.
View Article and Find Full Text PDFBackground: Brain microvascular endothelial cells (BMECs) astrocytes, neurons, and pericytes form the neurovascular unit (NVU). Interactions with NVU cells endow BMECs with extremely tight barriers via the expression of tight junction proteins, a host of active efflux and nutrient transporters, and reduced transcellular transport. To recreate the BMEC-enhancing functions of NVU cells, we combined BMECs, astrocytes, neurons, and brain pericyte-like cells.
View Article and Find Full Text PDFBrain pericytes play important roles in the formation and maintenance of the neurovascular unit (NVU), and their dysfunction has been implicated in central nervous system disorders. While human pluripotent stem cells (hPSCs) have been used to model other NVU cell types, including brain microvascular endothelial cells (BMECs), astrocytes, and neurons, hPSC-derived brain pericyte-like cells have not been integrated into these models. In this study, we generated neural crest stem cells (NCSCs), the embryonic precursor to forebrain pericytes, from hPSCs and subsequently differentiated NCSCs to brain pericyte-like cells.
View Article and Find Full Text PDF