Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phytic acid (PA) is a natural-occurring antioxidant, which plays an important role in many biological processes. PA is recognized as a potent inhibitor of lipid peroxidation because of its high affinity to multivalent cations, and it can play a role in osteogenic processes. However, its powerful chelating capacity is controversial because it can lead to a severe reduction of mineral availability in the organism. For this reason, compounds with beneficial biological properties of PA, but a modular ion binding capacity, are of high interest. In this work, we report the synthesis and physicochemical characterization of two hydroxylic derivatives of PA, named glycerylphytates (GPhy), through a condensation reaction of PA with glycerol (G). Both derivatives present antioxidant properties, measured by ferrozine/FeCl method and chelating activity with calcium ions depending on the content of glyceryl groups incorporated. Besides, the hydroxylic modification not only modulates the ion binding affinity of derivatives but also improves their cytocompatibility in human bone marrow mesenchymal cells (MSCs). Furthermore, GPhy derivatives display osteogenic properties, confirmed by COL1A and ALPL expression depending on composition. These positive features convert GPhy compounds into potent alternatives for those skeletal diseases treatments where PA is tentatively applied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685941PMC
http://dx.doi.org/10.1038/s41598-019-48015-5DOI Listing

Publication Analysis

Top Keywords

osteogenic properties
8
ion binding
8
glycerylphytate compounds
4
compounds tunable
4
tunable ion
4
ion affinity
4
affinity osteogenic
4
properties
4
properties phytic
4
phytic acid
4

Similar Publications

This review summarizes the biological properties of key myokines (Irisin, Apelin, CLCF1, and Myostatin) and osteokines (Osteocalcin, Sclerostin, FGF23 and the RANKL/OPG system). This work provides an in-depth analysis of the age-related network imbalance mechanism characterized by "downregulation of protective factors (Irisin, CLCF1, and uncarboxylated Osteocalcin) - upregulation of pro-degenerative factors (Myostatin, Sclerostin, and FGF23) - inflammation-driven amplification", and reveals the mechanism by which this network imbalance contributes to the comorbidity of sarcopenia, osteoporosis, and neurodegenerative diseases. Furthermore, the review evaluates the intersecting regulatory networks and molecular pathways through which myo-osteogenic factors modulate neurotrophic factors (BDNF, NGF and GDNF), and proposes intervention strategies based on these intersecting regulatory networks.

View Article and Find Full Text PDF

Preparation and osteogenic properties of degradable pectin-modified magnesium oxychloride bone cement.

Int J Biol Macromol

September 2025

Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China. Electronic address:

A novel biodegradable bone cement (PSM) was successfully developed through the modification of magnesium oxychloride cement (MOC) with pectin, specifically addressing the inherent limitation of poor water resistance in conventional MOC. Properties of PSM such as washout resistance, setting time, mechanical properties and degradation properties were investigated. Results showed that PSM with 1.

View Article and Find Full Text PDF

Compositional "plainification" in biodegradable magnesium-rare earth alloys - Achieving well-balanced performance in an ultra-lean Mg-Pr alloy.

Biomaterials

September 2025

Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China. Electronic address:

Contrary to the traditional strengthening route by adding multiple & high-dosage alloying elements, we here explored extremely compositional and phase-constituent "simplification" in rare earth (RE) containing biodegradable magnesium alloys for better biocompatibility. An ultra-lean Mg-0.1Pr alloy with a multiscale microstructure has been developed through casting and extrusion, which showed well-balanced performances that match the commercial Mg-based orthopedic products.

View Article and Find Full Text PDF

Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF