Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to. In the nucleus, RTKs regulate gene expression by binding chromatin directly or by interacting with transcription factors.

Methods: To determine whether DDR1 translocates to the nucleus and whether this event is mediated by collagen-induced DDR1 activation, we generated renal cells expressing wild-type or mutant forms of DDR1 no longer able to bind collagen. Then, we determined the location of the DDR1 upon collagen stimulation. Using both biochemical assays and immunofluorescence, we analyzed the steps involved in DDR1 nuclear translocation.

Results: We show that although DDR1 and its natural ligand, collagen, lack an NLS, DDR1 is present in the nucleus of injured human and mouse kidney proximal tubules. We show that DDR1 nuclear translocation requires collagen-mediated receptor activation and interaction of DDR1 with SEC61B, a component of the Sec61 translocon, and nonmuscle myosin IIA and -actin. Once in the nucleus, DDR1 binds to chromatin to increase the transcription of collagen IV, a major collagen upregulated in fibrosis.

Conclusions: These findings reveal a novel mechanism whereby activated DDR1 translates to the nucleus to regulate synthesis of profibrotic molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727269PMC
http://dx.doi.org/10.1681/ASN.2018111160DOI Listing

Publication Analysis

Top Keywords

ddr1
14
extracellular matrix
8
discoidin domain
8
domain receptor
8
ddr1 nuclear
8
nucleus
7
receptor
6
collagen
6
matrix receptor
4
receptor discoidin
4

Similar Publications

Modulating tumor collagen fiber alignment for enhanced lung cancer immunotherapy via inhaled RNA.

Nat Commun

August 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.

The clinical effectiveness of immunotherapies for lung cancers has been greatly hindered by the immune-excluded and immunosuppressive tumor microenvironment (TME) and limited pulmonary accessibility of therapeutics. Here, we develop an inhalable lipid nanoparticle (LNP) system that enables simultaneous delivery of mRNA encoding anti-discoidin domain receptor 1 (DDR1) single-chain variable fragments (mscFv) and siRNA targeting PD-L1 (siPD-L1) into pulmonary cancer cells. The secreted anti-DDR1 scFv blocks the binding of DDR1 extracellular domain to collagen, disrupting collagen fiber alignment and reducing tumor stiffness, thereby facilitating T cell infiltration.

View Article and Find Full Text PDF

Vitiligo is a chronic autoimmune dermatosis defined by selective melanocyte depletion and patchy depigmentation. IFN-γ-driven recruitment of autoreactive CD8 T cells and induction of melanocyte apoptosis are central to its pathogenesis. Current therapies-including UVB phototherapy, tacrolimus, vitamin D3 analogs, and surgical methods-show limited and inconsistent efficacy.

View Article and Find Full Text PDF

Discoidin domain receptor 1 (DDR1), a collagen-binding receptor tyrosine kinase, plays a key role in extracellular matrix remodeling, tumor progression, and immune evasion. However, DDR1's comprehensive role across diverse cancers and its therapeutic potential in immune-resistant tumors remain poorly defined. We performed a pan-cancer analysis integrating bulk transcriptomic datasets, single-cell RNA sequencing, and pathway enrichment to evaluate expression, genetic alterations, and its associations with immune cell infiltration and clinical outcomes.

View Article and Find Full Text PDF

Collagen alpha-5(IV) chain activation by nuclear factor 1/C promotes nasopharyngeal carcinoma progression.

Hum Cell

August 2025

Department of Ear-Nose-Throat, The Second People's Hospital of Huai'an, Huai'an Affiliated Hospital of Xuzhou Medical University, No. 60, Huaihai South Road, Qingjiangpu District, Huai'an, 223000, Jiangsu, People's Republic of China.

The expression of collagen receptors by cancer cells serves a vital function in the regulation of cell behavior. These receptors are capable of sensing the signals generated by alterations in the collagen state, thereby contributing to the maintenance of cellular homeostasis. The discoidin domain receptor (DDR)1 functions as a critical sensor of collagen fiber state and composition, regulating tumor cell growth, response to therapy, and patient survival.

View Article and Find Full Text PDF

Unraveling the role of discoidin domain receptors as an anti-fibrotic target in various organs: A comprehensive review.

Int J Biol Macromol

September 2025

Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China. Electronic address:

Discoidin domain receptors (DDRs) are a family of tyrosine kinase transmembrane receptors composed of discoidin domain receptor 1 (DDR1) and discoidin domain receptor 2 (DDR2) that interact with components of the extracellular matrix. They are involved in a broad range of important physiological processes, such as extracellular matrix signaling, cell adhesion, cell migration, and tissue fibrosis. DDR1 and DDR2 are expressed in a variety of cell and tissue types, but their expression patterns are variable and dependent on receptor type and physiological environment.

View Article and Find Full Text PDF