Electrospinning of Highly Aligned Fibers for Drug Delivery Applications.

J Mater Chem B

Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA.

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrospinning is a straightforward, cost-effective, and versatile technique for fabrication of polymeric micro/nanofibers with tunable structural properties. Controlling the size, shape, and spatial orientation of the electrospun fibers is crucial for utilization in drug delivery and tissue engineering applications. In this study, for the first time, we systematically investigate the effect of processing parameters, including voltage, syringe needle gauge, angular velocity of rotating wheel, syringe-collector distance, and flow rate on the size and alignment of electrospun PLGA fibers. Optimizing these parameters enabled us to produce highly aligned and monodisperse PLGA fibers (spatial orientation> 99% and coefficient of variation< 0.5). To assess the effect of fiber alignment on the release of encapsulated drugs from these fibers, we incorporated dexamethasone, an anti-inflammatory drug, within highly-aligned and randomly-oriented fibers with comparable diameters (~0.87 μm) and compared their release profiles. release studies revealed that the aligned fibers had less burst release (~10.8% in 24 hr) and more sustained release (~8.8% average rate of change for 24 days) compared to the random fibers. Finally, the degradation modes of the aligned and random fibers after 25 days incubation were characterized and compared. The findings of this study can be applied for the development of 3D degradable aligned fibers for controlled drug release and tissue engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675471PMC
http://dx.doi.org/10.1039/C8TB01258JDOI Listing

Publication Analysis

Top Keywords

aligned fibers
12
fibers
10
highly aligned
8
drug delivery
8
tissue engineering
8
engineering applications
8
plga fibers
8
random fibers
8
release
6
aligned
5

Similar Publications

Purpose: To develop and validate a deep learning-based model for automated evaluation of mammography phantom images, with the goal of improving inter-radiologist agreement and enhancing the efficiency of quality control within South Korea's national accreditation system.

Materials And Methods: A total of 5,917 mammography phantom images were collected from the Korea Institute for Accreditation of Medical Imaging (KIAMI). After preprocessing, 5,813 images (98.

View Article and Find Full Text PDF

The construction of perfluoropolyether (PFPE) slippery liquid-infused porous surfaces (SLIPS) on gold coatings is one of the most effective strategies for bestowing anticoagulation and antimicrobial properties on the material. However, the poor chemical affinity between fluorinated porous precursors and gold substrates causes the agglomeration of nanostructures, resulting in uneven nanoporous morphology and accelerating lubricant leakage. Simultaneously, the weak interfacial adhesion between the nanostructures and the substrate may lead to the detachment of nanostructures under blood circulation.

View Article and Find Full Text PDF

This study provides valuable guidance for simplifying fabrication procedures and enhancing the structural integrity and safety of carbon fiber (CF) laminate transfemoral (TF) prosthetic sockets. While the high specific strength of CF laminate sockets offers advantages over conventional plastics, essential production data-their orientation-dependent strength and optimal cure conditions-are lacking, often requiring complex, costly cure cycles. This study investigated (i) the influence of fiber orientation on TF prosthetic CF socket strength via finite element analysis (FEA) during standing, and (ii) optimal single-step Vacuum-Bag-Only (VBO) cure conditions for prepreg in a low-cost conventional oven.

View Article and Find Full Text PDF

Nematic Liquid Crystals (LCs), noted for their simple molecular alignment and broad use in optoelectronics, remain unmodified for over a century. However, in 2017, a unique polar phase, the ferroelectric nematic (N), is confirmed. Subsequently, in 2024, the revolutionary spontaneous mirror symmetry breaking of ferroelectric twist-bend nematic chiral structures (N phase) is demonstrated.

View Article and Find Full Text PDF

Recent advances in neural regeneration have demonstrated the importance of incorporating proteins into polymeric capsules to provide both topographical and biochemical cues to cells. Coaxial electrospinning has emerged as a versatile technique for embedding delicate bioactive agents within core-shell nanofibers, enabling controlled and sustained drug release. In this study, we employed a design-of-experiment approach to systematically investigate how controllable parameters in coaxial electrospinning influence the diameter and size distribution of aligned poly (ethylene oxide-poly(l-lactide-co-glycolide) nanofibers loaded with nerve growth factor (NGF).

View Article and Find Full Text PDF