98%
921
2 minutes
20
Polydeoxyadenosine (poly (dA)) has been extensively applied for detecting many drug molecules. Herein, we developed a sensitive method for detecting coralyne and heparin using a modified DNA probe with poly (dA) at one end. In the absence of coralyne, the DNA probe was digested by the Exonuclease I (Exo I), and therefore the SYBR Green I (SG I) emitted an extremely low fluorescent signal. While coralyne specifically binding to poly (dA) with strong propensity could remarkably restrain the disintegration of the DNA probe, through which as a template the second strand of DNA sequence was formed with the introduction of DNA polymerase. Therefore, the fluorescent signal of SG I was intensified to quantify coralyne. Based on this method, heparin can be determined due to its strong affinity towards coralyne. This method showed a linear range from 2 to 500 nM for coralyne with a low detection limit of 0.98 nM, and the linear range of heparin was from 1 to 100 nM when 1.25 nm was the detection limit. The proposed method was also implemented successfully in biological samples and showed a potential application for screening potential therapeutic molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcp.2019.101423 | DOI Listing |
Photochem Photobiol Sci
September 2025
Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.
The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
College of Chemistry and Molecular Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China.
The in-depth integration of gene regulation with protein modulation can enhance cellular information processing, yet it is significantly constrained by ineffective and complex protein-to-gene transduction strategies. Herein, we developed a simple protease-guided autocatalytic gene silencing platform named iPAD (intelligent peptide-programmed deoxyribonuclease) that converts the protease recognition events into versatile DNA readout signals by rationally designing a native protease-responsive cationic peptide (PP) to efficiently modulate the DNAzyme (Dz) activity. Without requiring additional chemical modifications, the multifunctional PP regulator consists simply of one cell-specific targeting peptide segment and two cationic peptide segments isolated by one protease-specific peptide substrate.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Biology, University of Regina, Regina, Saskatchewan, Canada.
Unlabelled: Bovine respiratory disease (BRD) is the primary disease of cattle and is responsible for most of the antibiotic use in the beef industry, both for metaphylaxis and treatment. Infection prevention and targeted treatments would benefit from detecting and identifying bacterial pathogens and, ideally, assessing antibiotic sensitivity. Here, we report success refining targeted metagenomics by hybridization capture sequencing (CapSeq) to detect and genotype bacterial pathogens and genes for antibiotic resistance in BRD.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
September 2025
School of Basic Medical Sciences, Yan'an University, Yan'an, China.
Live-cell imaging of intracellular proteins enables real-time observation of protein dynamics under near-physiological conditions, providing pivotal insights for both fundamental life science research and medical applications. However, due to limitations such as poor probe permeability and cytotoxicity associated with conventional antibody-based or genetically encoded labeling techniques, live-cell imaging remains a significant challenging. To address these limitations, here in this study, we developed and rigorously validated a novel aptamer-based fluorescent probe for real-time imaging of NEK9 kinase in living cells.
View Article and Find Full Text PDFRSC Chem Biol
July 2025
Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University Max-von-Laue-Str. 9 D-60438 Frankfurt am Main Germany
Herein we present the rapid development of LH168, a potent and highly selective chemical probe for WDR5, streamlined by utilizing a DEL-ML (DNA encoded library-machine learning) hit as the chemical starting point. LH168 was comprehensively characterized in bioassays and demonstrated potent target engagement at the WIN-site pocket of WDR5, with an EC of approximately 10 nM, a long residence time, and exceptional proteome-wide selectivity for WDR5. In addition, we present the X-ray co-crystal structure and provide insights into the structure-activity relationships (SAR).
View Article and Find Full Text PDF