Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To investigate the role of miR-146 and its possible relationship with MALAT1 in LPS-induced inflammation in human microvascular endothelial cells (HMECs), HMEC-1 cells were treated with LPS to construct an inflammatory injury cell model, and the cell viability, TNF-α and IL-6 secretion and the expression levels of VCAM-1, SELE and ICAM-1 were analysed as markers of inflammatory injury. The regulation mechanisms of miR-146 interacted with MALAT1 and the downstream NF-κB signalling were also verified by dual-luciferase assay and knockdown technology. LPS significantly decreased the cell viability, increased levels of VCAM-1, SELE and ICAM-1 and also up-regulated miR-146a/b, TNF-α and IL-6 in a dose-dependent manner. Over-expression of miR-146a resulted in down-regulation of TNF-α and IL-6, as well as VCAM-1, SELE and ICAM-1, while inhibition of miR-146a led to opposite results. The dual-luciferase reporter assay showed both miR-146a and miR-146b directly targeted and negatively regulated the expression of MALAT1. Silencing of MALAT1 suppressed LPS-induced NF-κB activation and TNF-α and IL-6 secretion, reducing the cell inflammatory injury, but these changes were reversed after combined treatment with miR-146a inhibitor. Taken together, we demonstrate that miR-146 protects HMECs against inflammatory injury by inhibiting NF-κB activation. This process is modulated by MALAT1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900645PMC
http://dx.doi.org/10.1177/1753425919861427DOI Listing

Publication Analysis

Top Keywords

inflammatory injury
20
tnf-α il-6
16
nf-κb activation
12
vcam-1 sele
12
sele icam-1
12
microvascular endothelial
8
endothelial cells
8
lps-induced nf-κb
8
cell viability
8
il-6 secretion
8

Similar Publications

Repopulating Microglia Suppress Peripheral Immune Cell Infiltration to Promote Poststroke Recovery.

CNS Neurosci Ther

September 2025

Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Aims: Sustained neuroinflammation following ischemic stroke impedes post-injury tissue repairment and neurological functional recovery. Developing innovative therapeutic strategies that simultaneously suppress detrimental inflammatory cascades and facilitate neurorestorative processes is critical for improving long-term rehabilitation outcomes.

Methods: We employed a microglia depletion-repopulation paradigm by administering PLX5622 for 7 days post-ischemia; followed by a 7-day withdrawal period to allow microglia repopulation.

View Article and Find Full Text PDF

Introduction: Pressure injuries (PIs) in patients with diabetes mellitus (DM) still impacts patients' health and places a heavy burden on healthcare systems. Stage I and stage II PIs are particularly prevalent among individuals with diabetes. Without timely and appropriate interventions, these injuries can progress to more severe stages, requiring prolonged recovery periods.

View Article and Find Full Text PDF

Extracorporeal membrane oxygenation (ECMO) is a high-risk, invasive therapy that sustains life through an external system. However, it often leads to complications such as bleeding, thrombosis, infection, and acute kidney injury (AKI). While up to 70% of ECMO patients develop AKI, the mechanisms driving this injury remain unclear, and effective treatments are limited.

View Article and Find Full Text PDF

Background: Organic chemicals have been known to cause allergic diseases such as bronchial asthma and hypersensitivity pneumonitis; however, the possibility that they do not cause irreversible pulmonary fibrosis has not been considered. Polyacrylic acid (PAA), an organic chemical, has caused irreversible progressive pulmonary fibrosis in exposed workers, indicating its potential to induce pulmonary inflammation and fibrosis. Although intratracheal instillation studies are commonly used for evaluating lung pathology, traditional methods face challenges with chemical substances, particularly nanoparticles, which tend to aggregate in suspension and prevent uniform pulmonary distribution.

View Article and Find Full Text PDF

Methodology and evaluation of the induction of experimental autoimmune encephalomyelitis, a murine preclinical model of multiple sclerosis.

Methods Cell Biol

September 2025

Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM-CSIC/UVA), Valladolid, Spain. Electronic address:

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that is characterized by a severe and progressive demyelinating process. It is considered a neurodegenerative autoimmune disorder driven by immune cell infiltration, overproduction of cytokines and reactive oxygen species (ROS) accumulation that leads to axonal and neuronal injury. Experimental autoimmune encephalomyelitis (EAE) is the most commonly used pre-clinical model of multiple sclerosis (MS), since it resembles many aspects of the human disease.

View Article and Find Full Text PDF