Influence of medicinal and aromatic plants into risk assessment of a new bioactive packaging based on polylactic acid (PLA).

Food Chem Toxicol

Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, EINA-University of Zaragoza, Torres Quevedo Building, María de Luna 3, 50018, Zaragoza, Spain. Electronic address:

Published: October 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A new biodegradable antioxidant active packaging for food applications based on antioxidants from medicinal and aromatic plants incorporated into a polylactic acid matrix was designed and developed. Melt blending processing technique was applied to prepare polylactic acid films loaded by sage and lemon balm leaves. Antioxidant properties of developed active films were investigated using the following methods: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl and a home-made generator of hydroxyl radicals. In addition, reducing power and total phenolic content of polylactic acid films were checked. The results of antioxidant capacity showed that percentage of hydroxylation for active film with lemon balm and sage was 55.5% ± 0.1% and 67.4% ± 0.3%, respectively. The reducing power of active films increased 8 times in comparison to the blank samples. Moreover, extensive investigation of influence of sage and lemon balm leaves on material safety and type of migrants was performed using migration assays. The composition of both non-volatile and volatile compounds of different active packaging films was compared with neat polylactic acid film. Three different food simulants such as 95% (v/v) ethanol, 10% (v/v) ethanol and 3% (w/v) acetic acid were checked. It was shown that the addition of sage and lemon balm leaves into a polylactic acid structure decreased the migration of both linear and cyclic polylactic acid oligomers, currently not legislated by European Union. Besides, total absence or decrease of migration of volatile compounds were observed when using the active films. Both thermal and mechanical properties of films were also evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2019.110662DOI Listing

Publication Analysis

Top Keywords

polylactic acid
28
lemon balm
16
sage lemon
12
balm leaves
12
active films
12
acid
9
medicinal aromatic
8
aromatic plants
8
active packaging
8
acid films
8

Similar Publications

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.

View Article and Find Full Text PDF

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF

Innovative packaging from vine shoots: a circular economy solution based on cellulosic aerogels for the wine industry using PLA as reinforcement.

Int J Biol Macromol

September 2025

Aerofybers Technologies SL. Parc Científic (UV), Carrer del Catedràtic Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain; Food Safety and Preservation Department, IATA-CSIC, Carrer del Catedràtic Agustín Escardino 7, 46980 Paterna, Valencia, Spain. Electronic address: isaacbg@aerofy

Highly porous, lightweight aerogels were developed based on cellulose extracted via industrial Kraft treatments from vine shoot (S) with the aim of valorising a currently generated waste and eucalyptus (EU) to reduce seasonality. In order to enhance their hydrophobicity and mechanical resistance, a poly-lactic acid (PLA) coating was applied through two different methodologies: spray- and pipette-coating. The resulting materials presented low densities (23-80 kg/m) with improved mechanical performance, revealing a notable augment in compressive strength after PLA coating (up to 20-fold increase, reaching 1.

View Article and Find Full Text PDF

Objectives: Bortezomib (BTZ) functions as an androgen receptor signalling inhibitor, is used for the treatment of prostate cancer, and has been sanctioned by the United States Food and Drug Administration. The medicinal applications of BTZ are impeded by low solubility, first-pass metabolism, and restricted bioavailability. This study aimed to develop and enhance polylactic acid-co-glycolic acid (PLGA) nanobubbles (NBs) as a sustained-release mechanism for BTZ, thereby augmenting stability and bioavailability.

View Article and Find Full Text PDF

Construction of environmentally friendly multifunctional core-shell flame retardant and its application in flame retardant polylactic acid.

Int J Biol Macromol

September 2025

College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China.

The flammability and poor ultraviolet (UV) aging resistance of polylactic acid (PLA) limit its applications outdoors and in fields requiring flame retardancy. To address these limitations, this study designed ammonium polyphosphate (APP) as the core, the biopolymer chitosan (CS) as the inner shell, and lignin (LK) as the outer shell. CS and LK are deposited on the surface of APP via electrostatic interaction in the aqueous phase to prepare a core-shell structure flame retardant APP@CS@LK with anti-UV aging properties.

View Article and Find Full Text PDF