98%
921
2 minutes
20
Background: The human body is a home to thousands of microbiotas. It is defined as a community of symbiotic, commensal and pathogenic microorganisms that have existed in all exposed sites of the body, which have co-evolved with diet, lifestyle, genetic factors and immune factors. Human microbiotas have been studied for years on their effects with relation to health and diseases.
Methods: Relevant published studies, literature and reports were searched from accessible electronic databases and related institutional databases. We used keywords, viz; microbiome, microbiota, microbiome drug delivery and respiratory disease. Selected articles were carefully read through, clustered, segregated into subtopics and reviewed.
Findings: The traditional belief of sterile lungs was challenged by the emergence of culture-independent molecular techniques and the recently introduced invasive broncho-alveolar lavage (BAL) sampling method. The constitution of a lung microbiome mainly depends on three main ecological factors, which include; firstly, the immigration of microbes into airways, secondly, the removal of microbes from airways and lastly, the regional growth conditions. In healthy conditions, the microbial communities that co-exist in our lungs can build significant pulmonary immunity and could act as a barrier against diseases, whereas, in an adverse way, microbiomes may interact with other pathogenic bacteriomes and viromes, acting as a cofactor in inflammation and host immune responses, which may lead to the progression of a disease. Thus, the use of microbiota as a target, and as a drug delivery system in the possible modification of a disease state, has started to gain massive attention in recent years. Microbiota, owing to its unique characteristics, could serve as a potential drug delivery system, that could be bioengineered to suit the interest. The engineered microbiome-derived therapeutics can be delivered through BC, bacteriophage, bacteria-derived lipid vesicles and microbe-derived extracellular vesicles. This review highlights the relationships between microbiota and different types of respiratory diseases, the importance of microbiota towards human health and diseases, including the role of novel microbiome drug delivery systems in targeting various respiratory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2019.108732 | DOI Listing |
Int J Pharm X
June 2025
Medical School, Southeast University, Nanjing 210009, China.
This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFiScience
September 2025
Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.
This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia.
Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.
Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.