98%
921
2 minutes
20
In everyday decision-making, individuals make trade-offs between short-term and long-term benefits or costs. Depending on many factors, individuals may choose to wait for larger delayed reward, yet in other situations they may prefer the smaller, immediate reward. In addition to within-subject variation in the short-term versus long-term reward trade-off, there are also interindividual differences in delay discounting (DD), which have been shown to be quite stable. The extent to which individuals discount the value of delayed rewards turns out to be associated with important health and disorder-related outcomes: the more discounting, the more unhealthy or problematic choices. This has led to the hypothesis that DD can be conceptualized as trans-disease process. The current systematic review presents an overview of behavioral trainings and manipulations that have been developed to reduce DD in human participants aged 12 years or older. Manipulation studies mostly contain one session and measure DD directly after the manipulation. Training studies add a multiple session training component that is not per se related to DD, in between two DD task measurements. Ninety-eight studies (151 experiments) were identified that tested behavioral trainings and manipulations to decrease DD. Overall, results indicated that DD can be decreased, showing that DD is profoundly context dependent and changeable. Most promising avenues to pursue in future research seem to be acceptance-based/mindfulness-based trainings, and even more so manipulations involving a future orientation. Limitations and recommendations are discussed to identify the mechanistic processes that allow for changes in discount rate and behavior accordingly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863952 | PMC |
http://dx.doi.org/10.3758/s13423-019-01629-2 | DOI Listing |
Nature
September 2025
Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Key Laboratory of RNA Innovation Science and Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
Antigen-induced clustering of cell surface receptors, including T cell receptors and Fc receptors, represents a widespread mechanism in cell signalling activation. However, most naturally occurring antigens, such as tumour-associated antigens, stimulate limited receptor clustering and on-target responses owing to insufficient density. Here we repurpose proximity labelling, a method used to biotinylate and identify spatially proximal proteins, to amplify designed probes as synthetic antigen clusters on the cell surface.
View Article and Find Full Text PDFLight Sci Appl
September 2025
National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China.
Planar optical elements incorporating space-varying Pancharatnam-Berry phase have revolutionized the manipulation of light fields by enabling continuous control over amplitude, phase, and polarization. While previous research focusing on linear functionalities using apolar liquid crystals (LCs) has attracted much attention, extending this concept to the nonlinear regime offers unprecedented opportunities for advanced optical processing. Here, we demonstrate the reconfigurable nonlinear Pancharatnam-Berry LC diffractive optics in photopatterned ion-doped ferroelectric nematics.
View Article and Find Full Text PDFNano Lett
September 2025
Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Precise delivery of nanoliter-scale reagents is essential for high-throughput biochemical assays, yet existing platforms often lack real-time control and selective content fusion. Conventional methods rely on passive encapsulation or stochastic pairing, limiting both throughput and biochemical specificity. Here, we introduce an on-demand nanoliter delivery platform that seamlessly integrates electrical sensing, triggered droplet merging, and passive sorting in a single continuous flow.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.
View Article and Find Full Text PDFAnn Bot
September 2025
Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
Background And Aims: Since the Industrial Revolution, rising atmospheric CO₂, warming, and more frequent droughts have significantly impacted ecosystems. While the response of leaf functional traits to these climate change factors have been widely studied, reproductive traits remain relatively understudied, despite their key role in the diversification and distribution of flowering plants. Here, we investigated how elevated CO₂, warming, drought, and their interactions affect floral, leaf and seed traits in two model grassland species.
View Article and Find Full Text PDF