Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Robust marine carbon sensors with small size, low power consumption, and high sensitivity provide greater insight into the carbon cycle studies and resolve environmental variability. We report here the development of a diminutively integrated tunable diode laser absorption spectroscopy (TDLAS) system with a specially designed multipass gas cell for small amounts of dissolved gas extractions and measurements. It was used to detect and monitor carbon dioxide (CO) dissolved in water and seawater. Systematic experiments have been carried out for system evaluation in the lab. Extracted CO was determined via its 4989.9 cm optical absorption line. The achieved TDLAS measurement precision was 4.18 ppm for CO, measured by averaging up to 88 s. The integrated absorbance was found to be linear to gas concentrations over a wide range. Comparison measurements of the atmospheric CO values with a commercial instrument confirmed a good accuracy of our TDLAS-based system. The first test campaign was also accomplished with a hollow fiber membrane contactor, and concentrations of CO were quantitatively detected with partial degasification operations. The results clearly show the ability to continuously measure dissolved gases and highlight the potential of the system to help us better understand physical and geochemical processes in a marine environment.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5095797DOI Listing

Publication Analysis

Top Keywords

tunable diode
8
diode laser
8
laser absorption
8
absorption spectroscopy
8
carbon dioxide
8
system
5
development compact
4
compact tunable
4
spectroscopy based
4
based system
4

Similar Publications

The formation of heterostructure interfaces from quantum dots (or nanocrystals) and lower-dimensional (2D or quasi-2D) materials enables interfacial and optoelectronic property tuning. However, this strategy has not been sufficiently characterized, for example, the application of cesium halide nanocrystals to quasi-2D perovskite structures is underexplored, and the mechanisms of the resulting structural modifications and specific nanocrystal roles are not fully understood. Herein, the effects of postsynthetically surface-modifying quasi-2D perovskite films with CsX ( = Cl, Br, I) nanocrystals are examined to bridge this gap.

View Article and Find Full Text PDF

Giant and Tunable Optical Nonlinearity via Electrochemical Control of the Tellurium-Electrolyte Interface.

Nano Lett

September 2025

Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology School of Physics Northwest University, Xi'an 710069, China.

The semiconductor-electrolyte interface with strong electrical tunability offers a platform for tuning nonlinear optical (NLO) processes and achieving giant optical nonlinearities. However, such a demonstration and fundamental mechanistic understanding of electrochemically tuned NLO properties have not been reported. Here, we developed an electrochemical Z-scan system to characterize the evolution of NLO responses in tellurium nanorod films under bias voltage.

View Article and Find Full Text PDF

Bright Thermo-resilient and Promiscuous Zombie Protein for Lighting Applications.

ACS Mater Lett

September 2025

Technical University of Munich, Campus Straubing for Sustainability and Biotechnology, Chair of Biogenic Functional Materials, Schulgasse, 22, Straubing 94315, Germany.

Proteins are at the forefront of materials science, with implementations in optical, electrical, and structural materials for transformative and sustainable technologies. Within the biohybrid light-emitting diode (BioHLED) concept, replacing toxic and/or rare photon filters with classical β-barrel fluorescent proteins (FPs) that must withstand irradiation, temperature, oxidation, and dehydration stress, the question if FPs from extremophiles and/or living fossils might be better for lighting applications arises. We addressed this by introducing a thermostable prokaryotic FP, whose inherent promiscuity enables the design of tunable emitting proteins.

View Article and Find Full Text PDF

Using tunable in-band laser diode (LD) pumping (791.1-798.2 nm), an orthogonally polarized dual-wavelength (OPDW) Nd:LaMgAl11O19/Nd:SrAl12O19 (Nd:LMA/Nd:SA) operation at 1297 nm and 1306 nm for the 4F3/2 → 4I13/2 transition is demonstrated for the first time.

View Article and Find Full Text PDF

Quantum dots (QDs) have garnered significant attention for their unique size-dependent optical and electronic properties, enabling their widespread use in applications ranging from high-efficiency photovoltaics and light-emitting diodes to biomedical imaging and quantum computing. Their tunable emission, high photo-stability, and ease of surface modification make them ideal candidates for precision nanotechnology applications. In this work, we explore a novel and rapidly emerging application of QDs in hardware security through the development of Quantum Dot-based Physical Unclonable Functions (QD-PUFs).

View Article and Find Full Text PDF