98%
921
2 minutes
20
A new design principle for a mixed broad (TEMPO) and narrow (Trityl) line radical to boost the dynamic nuclear polarization efficiency is electron spin density matching, suggesting a polarizing agent of one Trityl tethered to at least two TEMPO moieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597276 | PMC |
http://dx.doi.org/10.1039/c9cc03499d | DOI Listing |
J Am Chem Soc
September 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
Magnetic two-dimensional van der Waals (vdWs) materials hold potential applications in low-power and high-speed spintronic devices due to their degrees of freedom such as valley and spin. In this Letter, we propose a mechanism that uses stacking engineering to control valley polarization (VP), ferroelectricity, layer polarization (LP), and magnetism in vdWs bilayers. Through first-principles calculations, we predict that the T-VSI monolayer is a magnetic semiconductor with a sizable VP.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia.
An explicitly correlated extension of a pair-function based perturbation theory is presented. The reference is obtained as the antisymmetrized product of strongly orthogonal geminals, termed Strictly Localized Geminals (SLG), which can capture static correlation at mean-field cost. Geminals entering SLG are spin unrestricted, in general, and are expanded in the one-electron basis of the natural orbitals of the unrestricted Hartree-Fock wavefunction.
View Article and Find Full Text PDFChem Sci
September 2025
College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
Reverse intersystem crossing (RISC) process is critical for thermally activated delayed fluorescence (TADF) materials to realize spin-flip of triplet excitons in organic light-emitting diodes (OLEDs), but the RISC processes of most TADF materials are not fast enough, undermining electroluminescence (EL) efficiency stability and operational lifetime. Herein, a symmetry breaking strategy to accelerate RISC processes is proposed. By designing asymmetric electron-withdrawing backbone consisting of benzonitrile and xanthone/thioxanthone groups, two new asymmetric TADF molecules, 4tCzCN-pXT and 4tCzCN-pTXT, with multiple 3,6-di-tert-butylcarbazole donors are successfully developed.
View Article and Find Full Text PDF