98%
921
2 minutes
20
Background: Plant membrane transporters are involved in diverse cellular processes underpinning plant physiology, such as nutrient acquisition, hormone movement, resource allocation, exclusion or sequestration of various solutes from cells and tissues, and environmental and developmental signalling. A comprehensive characterization of transporter function is therefore key to understanding and improving plant performance.
Scope And Conclusions: In this review, we focus on the complexities involved in characterizing transporter function and the impact that this has on current genomic annotations. Specific examples are provided that demonstrate why sequence homology alone cannot be relied upon to annotate and classify transporter function, and to show how even single amino acid residue variations can influence transporter activity and specificity. Misleading nomenclature of transporters is often a source of confusion in transporter characterization, especially for people new to or outside the field. Here, to aid researchers dealing with interpretation of large data sets that include transporter proteins, we provide examples of transporters that have been assigned names that misrepresent their cellular functions. Finally, we discuss the challenges in connecting transporter function at the molecular level with physiological data, and propose a solution through the creation of new databases. Further fundamental in-depth research on specific transport (and other) proteins is still required; without it, significant deficiencies in large-scale data sets and systems biology approaches will persist. Reliable characterization of transporter function requires integration of data at multiple levels, from amino acid residue sequence annotation to more in-depth biochemical, structural and physiological studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6758574 | PMC |
http://dx.doi.org/10.1093/aob/mcz066 | DOI Listing |
Ann Anat
September 2025
Department of Biology, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
The Anatolian ground squirrel (Spermophilus xanthoprymnus) offers a valuable model for investigating neuroadaptive processes in the retina during hibernation. This study aimed to assess the expression of vesicular glutamate transporter 1 (VGLUT1), glutamic acid decarboxylase (GAD) isoforms GAD65 and GAD67, and microtubule-associated protein 2 (MAP2) in the retina during pre-hibernation and hibernation states. Retinal tissues were analyzed using immunohistochemistry and densitometric quantification.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
September 2025
University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Metal Homeostasis, 1 Miecznikowa Str., 02-096, Warszawa, Poland. Electronic address:
The Natural Resistance Associated Macrophage Proteins (NRAMPs) are membrane-targeted transporters with low substrate specificity, that mediate the import (translocation to the cytoplasm) of metals, mainly essential nutrients, e.g. iron (Fe), manganese (Mn), zinc (Zn), cobalt (Co), copper (Cu) or nickel (Ni).
View Article and Find Full Text PDFBioresour Technol
September 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:
Sulfur-modified nanoscale zero-valent iron (S-nZVI) has emerged as a promising additive for enhancing anaerobic treatment of refractory wastewater. However,its long-term effectiveness and role in toxic shock resistance remain unclear. Herein, S-nZVI was first applied to continuous-flow anaerobic reactors treating wastewater containing 2,4-dichlorophenol (2,4-DCP).
View Article and Find Full Text PDFPharmacol Biochem Behav
September 2025
Department of Pharmacology, Toxicology & Neuroscience, School of Graduate Studies, Louisiana State University Health Shreveport - Shreveport, Louisiana, USA; Louisiana Addiction Research Center, Louisiana State University Health Shreveport - Shreveport, Louisiana, USA; Department of Psychiatry and B
Methamphetamine is a highly addictive psychostimulant with significant neurobiological consequences, yet strain-dependent differences in its effects remain poorly understood. This study investigated behavioral and molecular differences in Swiss-Webster and C57BL/6 mice following methamphetamine exposure. Swiss-Webster mice exhibited greater behavioral sensitivity to methamphetamine compared to C57BL/6 mice, as demonstrated by lower peak doses required to elicit locomotor stimulation and conditioned place preference.
View Article and Find Full Text PDFBehav Brain Res
September 2025
Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China. Electronic address:
Glutamate-mediated excitotoxicity represents a common pathomechanism in neurological disorders. As the predominant glutamate transporter in the central nervous system, glutamate transporter 1 (GLT-1, known as EAAT2 in humans) plays a crucial role in maintaining glutamate homeostasis and preventing excitotoxicity through its Na⁺-dependent transport mechanism. Key functions of GLT-1 include reducing extracellular glutamate concentration, regulating calcium homeostasis, suppressing oxidative stress, preserving mitochondrial integrity, and modulating neuroinflammatory processes by limiting microglial activation.
View Article and Find Full Text PDF