Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genome-wide identification, classification, expression analyses, and functional characterization of GRAS genes in oil crop, Brassica napus, indicate their importance in root development and stress response. GRAS proteins are a plant-specific transcription factor gene family involved in tissues development and stress response. We classified 87 putative GRAS genes in the Brassica napus genome (BnGRASs) into 13 subfamilies by phylogenetic analysis. The C-terminal GRAS domains of Brassica napus (B. napus) proteins were less conserved among subfamilies, but were conserved within each subfamily. A series of analyses revealed that 89.7% of the BnGRASs did not have intron insertions, and 24 specific-motifs were found at the N-terminal. A highly conserved microRNA 171 (miRNA171) target was observed specifically in the HAM subfamily across land plants. A total of 868 pairs of interaction proteins were predicted, the primary of which were transcription factors involved in transcriptional regulation and signal transduction. Integrated comparative analysis of GRAS genes across 26 species of algae, mosses, ferns, gymnosperms, and angiosperms revealed that this gene family originated in early mosses and was classified into 19 subfamilies, 14 of which may have originated prior to bryophyte evolution. RNA-Seq analysis demonstrated that most BnGRASs were widely expressed in different tissues/organs at different stages in B. napus, and 24 BnGRASs were highly/specifically expressed in roots. Results from a qRT-PCR analysis suggested that two BnGRASs belonging to SCR and LISCL subfamilies potentially have important roles in the stress response of roots.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-019-03199-yDOI Listing

Publication Analysis

Top Keywords

brassica napus
16
stress response
16
gene family
12
development stress
12
gras genes
12
expression analyses
8
root development
8
gras
6
napus
6
bngrass
5

Similar Publications

Deciphering the genetic regulation of flowering time in rapeseed for early-maturation breeding.

J Genet Genomics

September 2025

College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China. Elec

Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency.

View Article and Find Full Text PDF

Hybrid epigenome unveils parental genetic divergence shaping salt-tolerant heterosis in Brassica napus.

New Phytol

September 2025

National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Heterosis holds great potential for improving yield, quality, and environmental adaptability in crop breeding, which suggests that hybrids can exhibit better performance in adapting to extreme environments. However, the epigenetic mechanisms of salt-tolerant heterosis in allopolyploid crop Brassica napus (AACC, 2n = 38), particularly chromatin accessibility, remain largely unexplored. We investigated the dynamics of chromatin accessibility and transcriptional reprogramming during a time course of salt exposure in Brassica napus hybridization.

View Article and Find Full Text PDF

Identification and expression analysis of the gene family in .

Front Plant Sci

August 2025

College of Life Sciences, Leshan Normal University, Leshan, Sichuan, China.

(Eukaryotic Transcription Factor 2/Dimerization Partner) refers to a class of protein complexes that play a pivotal role in the regulation of gene transcription in eukaryotes. In higher plants, transcription factors are of vital significance in mediating responses to environmental stresses. Based on differences in their conserved structural domains, they can be categorized into three subgroups: E2F, DP, and DEL (DP-E2F-like).

View Article and Find Full Text PDF

Nitrogen (N) is essential for plant growth, but excessive fertilizer use decreases nitrogen use efficiency (NUE) and raises environmental concerns. This study investigated the effect of exogenous abscisic acid (ABA; 50 μM) application on rapeseed (Brassica napus L.) plants under hydroponic conditions with high (7.

View Article and Find Full Text PDF

This dataset provides comprehensive profiles of bacterial and fungal communities associated with the holobionts of CP4-EPSPS-containing hybrids and wild-type in a natural roadside habitat. The hybrids were genetically consistent with × origin and possible backcrossing with , though the site and mechanism of hybridization are unclear. A total of 120 holobiont samples, including flowers, leaves, dead leaves, roots, and surrounding soil, were collected from twelve wild-type and twelve hybrid individuals (60 samples per group), in a natural roadside environment.

View Article and Find Full Text PDF