98%
921
2 minutes
20
The spatiotemporal distribution of cytokines orchestrates immune responses in vivo, yet the underlying mechanisms remain to be explored. We showed here that the spatial distribution of interleukin-4 (IL4) in invariant natural killer T (iNKT) cells regulated crosstalk between iNKT cells and dendritic cells (DCs) and controlled iNKT cell-mediated T-helper type 1 (Th1) responses. The persistent polarization of IL4 induced by strong lipid antigens, that is, α-galactosylceramide (αGC), caused IL4 accumulation at the immunological synapse (IS), which promoted the activation of the IL4R-STAT6 (signal transducer and activator of transcription 6) pathway and production of IL12 in DCs, which enhanced interferon-γ (IFNγ) production in iNKT cells. Conversely, the nonpolarized secretion of IL4 induced by Th2 lipid antigens with a short or unsaturated chain was incapable of enhancing this iNKT cell-DC crosstalk and thus shifted the immune response to a Th2-type response. The nonpolarized secretion of IL4 in response to Th2 lipid antigens was caused by the degradation of Cdc42 in iNKT cells. Moreover, reduced Cdc42 expression was observed in tumor-infiltrating iNKT cells, which impaired IL4 polarization and disturbed iNKT cell-DC crosstalk in tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192838 | PMC |
http://dx.doi.org/10.1038/s41423-019-0243-z | DOI Listing |
J Hematop
September 2025
All India Institute of Medical Sciences, New Delhi, India.
This study evaluated immune cell subset variations in immune thrombocytopenia (ITP) by comparing frequencies at diagnosis with controls and assessing changes post-therapy. A single-center prospective observational study enrolled 25 untreated acute and chronic ITP patients and 20 matched controls from January 2018 to January 2019. Immune cell subsets, including CD4+, CD8+, NK cells, NK-T cells, and T regulatory cells (Tregs), were analyzed using flow cytometric immunophenotyping.
View Article and Find Full Text PDFNat Rev Immunol
September 2025
La Jolla Institute for Immunology, La Jolla, CA, USA.
Immunometabolism, the intersection of cellular metabolism and immune function, has revolutionized our understanding of T cell biology. Changes in cellular metabolism help guide the development of thymocytes and the transition of T cells from naive to effector, memory and tissue-resident states. Innate-like T cells are a unique group of T cells with special characteristics.
View Article and Find Full Text PDFBrief Funct Genomics
January 2025
School of Mathematics and Statistics, Henan University of Science and Technology, No. 263 Kaiyuan Avenue, Luolong District, Luoyang, Henan 471000, China.
Background: Comorbidities and genetic correlations between gastrointestinal tract diseases and psychiatric disorders have been widely reported, but the underlying intrinsic link between Alzheimer's disease (AD) and inflammatory bowel disease (IBD) is not adequately understood.
Methods: To identify pathogenic cell types of AD and IBD and explore their shared genetic architecture, we developed Pathogenic Cell types and shared Genetic Loci (PCGL) framework, which studied AD and IBD and its two subtypes of ulcerative colitis (UC) and Crohn's disease (CD).
Results: We found that monocytes and CD8 T cells were the enriched pathogenic cell types of AD and IBDs, respectively.
Front Immunol
September 2025
Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.
Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.
Front Immunol
September 2025
Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
Kaempferol (KMF) is a dietary flavonoid exhibiting profound immunomodulatory effects across multiple immune cell populations. This review synthesizes current insights into how KMF regulates diverse immune cell populations and its therapeutic potential in inflammatory and immune-related disorders. KMF exhibits multifaceted effects on T cells.
View Article and Find Full Text PDF