Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Over the last decade, various new therapies have been developed to promote anti-tumor immunity. Despite interesting clinical results in hematological malignancies, the development of bispecific killer-cell-engager antibody formats directed against tumor cells and stimulating anti-tumor T cell immunity has proved challenging, mostly due to toxicity problems. We report here the generation of trifunctional natural killer (NK) cell engagers (NKCEs), targeting two activating receptors, NKp46 and CD16, on NK cells and a tumor antigen on cancer cells. Trifunctional NKCEs were more potent in vitro than clinical therapeutic antibodies targeting the same tumor antigen. They had similar in vivo pharmacokinetics to full IgG antibodies and no off-target effects and efficiently controlled tumor growth in mouse models of solid and invasive tumors. Trifunctional NKCEs thus constitute a new generation of molecules for fighting cancer. VIDEO ABSTRACT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2019.04.041DOI Listing

Publication Analysis

Top Keywords

natural killer
8
killer cell
8
cell engagers
8
tumor antigen
8
trifunctional nkces
8
tumor
5
multifunctional natural
4
engagers targeting
4
targeting nkp46
4
nkp46 trigger
4

Similar Publications

Unlabelled: Retinoblastoma is a malignant retinal tumor characterized by an aggressive clinical course, with frequent recurrences and the emergence of new foci even during chemotherapy.

Objective: This study investigated the subpopulation composition of peripheral blood lymphocytes in children with newly diagnosed untreated retinoblastoma.

Material And Methods: A total of 24 children (48 eyes) were examined between December 20, 2023, and September 1, 2024; retinoblastoma was diagnosed in 28 eyes.

View Article and Find Full Text PDF

Background: Comorbidities and genetic correlations between gastrointestinal tract diseases and psychiatric disorders have been widely reported, but the underlying intrinsic link between Alzheimer's disease (AD) and inflammatory bowel disease (IBD) is not adequately understood.

Methods: To identify pathogenic cell types of AD and IBD and explore their shared genetic architecture, we developed Pathogenic Cell types and shared Genetic Loci (PCGL) framework, which studied AD and IBD and its two subtypes of ulcerative colitis (UC) and Crohn's disease (CD).

Results: We found that monocytes and CD8 T cells were the enriched pathogenic cell types of AD and IBDs, respectively.

View Article and Find Full Text PDF

Introduction: We attempted to perform a comprehensive bioinformatics analyses on osteoarthritis (OA) based on the NKT-related genes and explore the clinical related critical genes.

Methods: Differentially expressed genes (DEGs) and NKT-related genes from WGCNA were obtained using the dataset GSE114007, followed by intersection analysis to obtain NKT-related DEGs. Lasso regression, support vector machine and random forest were performed to screen feature genes, followed by verification with ROC curve, and nomogram model.

View Article and Find Full Text PDF

Purpose: Natural killer (NK) cell-derived extracellular vesicles (NK-EVs) have garnered significant research interest in the field of tumor immunotherapy. However, the large-scale production of NK-EVs remains a major challenge, limiting their clinical application. This study aims to develop a simple and efficient method for the preparation of NK cell-derived nanovesicles (NK-NVs) and to evaluate their cytotoxicity and drug delivery potential.

View Article and Find Full Text PDF

Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

Front Immunol

September 2025

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.

Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.

View Article and Find Full Text PDF