98%
921
2 minutes
20
Human activity recognition has become an active research field over the past few years due to its wide application in various fields such as health-care, smart home monitoring, and surveillance. Existing approaches for activity recognition in smart homes have achieved promising results. Most of these approaches evaluate real-time recognition of activities using only sensor activations that precede the evaluation time (where the decision is made). However, in several critical situations, such as diagnosing people with dementia, "preceding sensor activations" are not always sufficient to accurately recognize the inhabitant's daily activities in each evaluated time. To improve performance, we propose a method that delays the recognition process in order to include some sensor activations that occur after the point in time where the decision needs to be made. For this, the proposed method uses multiple incremental fuzzy temporal windows to extract features from both preceding and some oncoming sensor activations. The proposed method is evaluated with two temporal deep learning models (convolutional neural network and long short-term memory), on a binary sensor dataset of real daily living activities. The experimental evaluation shows that the proposed method achieves significantly better results than the real-time approach, and that the representation with fuzzy temporal windows enhances performance within deep learning models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2019.2918412 | DOI Listing |
Background: Staphylococcus epidermidis (SE) is a predominant hospital-acquired bacterium leading to late-onset sepsis in preterm infants. Recent findings have suggested that postnatal S. epidermidis infection is associated with short-term neurodevelopmental consequences.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.
Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
College of Chemistry and Molecular Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China.
The in-depth integration of gene regulation with protein modulation can enhance cellular information processing, yet it is significantly constrained by ineffective and complex protein-to-gene transduction strategies. Herein, we developed a simple protease-guided autocatalytic gene silencing platform named iPAD (intelligent peptide-programmed deoxyribonuclease) that converts the protease recognition events into versatile DNA readout signals by rationally designing a native protease-responsive cationic peptide (PP) to efficiently modulate the DNAzyme (Dz) activity. Without requiring additional chemical modifications, the multifunctional PP regulator consists simply of one cell-specific targeting peptide segment and two cationic peptide segments isolated by one protease-specific peptide substrate.
View Article and Find Full Text PDFInflamm Res
September 2025
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
Cardiovascular diseases (CVDs) are a group of conditions that significantly affect human health and are among the leading causes of death and disability worldwide. Clinical trials and basic research have demonstrated that inflammation plays a pivotal role in the development of CVDs. The inflammasome is a critical component of the innate immune system, involved in various inflammatory responses to pathogens and tissue damage.
View Article and Find Full Text PDFJ Vis
September 2025
Neuroscience Program, Western University, London, ON, Canada.
Studies of visual face processing often use flat images as proxies for real faces due to their ease of manipulation and experimental control. Although flat images capture many features of a face, they lack the rich three-dimensional (3D) structural information available when binocularly viewing real faces (e.g.
View Article and Find Full Text PDF