FISHing for Damage on Metaphase Chromosomes.

Methods Mol Biol

Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.

Published: March 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescence in situ hybridization (FISH) is used to examine chromosomal abnormalities and DNA damage. Developed in the early 1980s, this technique remains an important tool for understanding chromosome biology and diagnosing genetic disease and cancer. Use of FISH on metaphase chromosomes allows the visualization of chromosomal abnormalities at specific loci. Here, we describe methods for creating metaphase chromosome spreads and the use of telomere FISH probes to detect chromosome ends.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9500-4_24DOI Listing

Publication Analysis

Top Keywords

metaphase chromosomes
8
chromosomal abnormalities
8
fishing damage
4
damage metaphase
4
chromosomes fluorescence
4
fluorescence situ
4
situ hybridization
4
hybridization fish
4
fish examine
4
examine chromosomal
4

Similar Publications

The synaptonemal complex (SC) is a meiosis-specific structure that aligns homologous chromosomes and promotes the repair of meiotic DNA double-strand breaks (DSBs). To investigate how defects in SC formation affect gametogenesis in zebrafish, we analyzed mutations in two genes encoding core SC components: syce2 and sycp1. In syce2 mutants, chromosomes exhibit partial synapsis, primarily at sub-telomeric regions, whereas sycp1 mutant chromosomes display early prophase co-alignment but fail to synapse.

View Article and Find Full Text PDF

Introduction: Satellite DNA (satDNA) is a rapidly evolving component of plant genomes, typically found in (peri)centromeric, (sub)telomeric, and other heterochromatic regions. Due to their variability and species- or population-specific distribution, satDNA serves as valuable cytogenetic markers for studying chromosomal rearrangements and karyotype evolution among closely related species. Previous studies have identified species-specific subtelomeric repeats CS-1 in , HSR1 in , and HJSR in .

View Article and Find Full Text PDF

Mammalian female meiosis is uniquely regulated to produce a developmentally competent egg capable of supporting embryogenesis. During meiosis I, homologous chromosomes segregate, with half extruded into the first polar body. The egg then arrests at metaphase II and only resumes meiosis and extrudes the second polar body following fertilization.

View Article and Find Full Text PDF

The mechanisms of MTOCs maturation in human and mouse oocytes.

Sci Bull (Beijing)

August 2025

Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China. Electronic address:

The microtubule organizing centers (MTOCs) of human and mouse oocytes are essential for meiotic spindle assembly and for ensuring precise chromosome segregations. Previous studies mainly focus on investigating MTOCs changes in metaphase I oocyte. However, the detailed dynamic changes and underlying mechanisms of the MTOCs in germinal vesicle (GV) oocytes-a stage that early events of MTOC maturation happened- remain unclear.

View Article and Find Full Text PDF

Purpose: In piezo-ICSI, the first polar body (PB) of a metaphase II (MII) oocyte is generally oriented in the 6 or 12 o'clock position relative to sperm injection at 3 o'clock. However, the ooplasmic cell membrane may be damaged during drilling of the zona pellucida by piezo pulses. Here, we tested a new piezo-ICSI method in which the PB is set at the 2 or 4 o'clock position, so that zona drilling is performed through the widest position in the perivitelline space (para-PB piezo).

View Article and Find Full Text PDF