Publications by authors named "Jason A Stewart"

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin.

View Article and Find Full Text PDF
Article Synopsis
  • Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disorder that mimics accelerated aging, leading to a typical lifespan of only mid-teens due to a mutation in the LMNA gene.
  • The mutation results in the production of progerin, an abnormal form of lamin A that causes genomic instability and is linked to increased DNA damage.
  • Research using human cell lines showed that cells expressing progerin exhibited heightened genomic damage without changes to cell growth rates, indicating that progerin-induced DNA damage can happen independently of overall cell replication.
View Article and Find Full Text PDF

CTC1-STN1-TEN1 (CST) is a single-stranded DNA binding protein vital for telomere length maintenance with additional genome-wide roles in DNA replication and repair. While CST was previously shown to function in double-strand break repair and promote replication restart, it is currently unclear whether it has specialized roles in other DNA repair pathways. Proper and efficient repair of DNA is critical to protecting genome integrity.

View Article and Find Full Text PDF

Human CST (CTC1-STN1-TEN1) is a ssDNA-binding complex that interacts with the replisome to aid in stalled fork rescue. We previously found that CST promotes telomere replication to maintain genomic integrity via G-quadruplex (G4) resolution. However, the detailed mechanism by which CST resolves G4s in vivo and whether additional factors are involved remains unclear.

View Article and Find Full Text PDF

Serum tyrosine levels increase during aging, neurocognitive, metabolic, and cardiovascular disorders. However, calorie restriction (CR) and sleep lower serum tyrosine levels. We previously showed that tyrosine inhibits tyrosyl-tRNA synthetase (TyrRS)-mediated activation of poly-ADP-ribose polymerase 1 (PARP1).

View Article and Find Full Text PDF

Sister chromatid cohesion (SCC), the pairing of sister chromatids after DNA replication until mitosis, is established by loading of the cohesin complex on newly replicated chromatids. Cohesin must then be maintained until mitosis to prevent segregation defects and aneuploidy. However, how SCC is established and maintained until mitosis remains incompletely understood, and emerging evidence suggests that replication stress may lead to premature SCC loss.

View Article and Find Full Text PDF

The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically opposed in the cell. DSBs are considered one of the most deleterious forms of DNA damage and must be quickly recognized and repaired. Telomeres, on the other hand, are specialized, stable DNA ends that must be protected from recognition as DSBs to inhibit unwanted chromosome fusions.

View Article and Find Full Text PDF

CST (CTC1-STN1-TEN1) is a heterotrimeric, RPA-like complex that binds to single-stranded DNA (ssDNA) and functions in the replication of telomeric and non-telomeric DNA. Previous studies demonstrated that deletion of CTC1 results in decreased cell proliferation and telomere DNA damage signaling. However, a detailed analysis of the consequences of conditional CTC1 knockout (KO) has not been fully elucidated.

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) is used to examine chromosomal abnormalities and DNA damage. Developed in the early 1980s, this technique remains an important tool for understanding chromosome biology and diagnosing genetic disease and cancer. Use of FISH on metaphase chromosomes allows the visualization of chromosomal abnormalities at specific loci.

View Article and Find Full Text PDF

Human CTC1-STN1-TEN1 (CST) is an RPA-like single-stranded DNA-binding protein that interacts with DNA polymerase α-primase (pol α) and functions in telomere replication. Previous studies suggest that CST also promotes replication restart after fork stalling. However, the precise role of CST in genome-wide replication remains unclear.

View Article and Find Full Text PDF

The human CTC1-STN1-TEN1 (CST) complex is a single-stranded DNA binding protein that shares homology with RPA and interacts with DNA polymerase alpha/primase. CST complexes are conserved from yeasts to humans and function in telomere maintenance. A common role of CST across species is in the regulation of telomere extension by telomerase and C-strand fill-in synthesis.

View Article and Find Full Text PDF

Human CST (CTC1-STN1-TEN1) is an RPA-like complex that is needed for efficient replication through the telomere duplex and genome-wide replication restart after fork stalling. Here, we show that STN1/CST has a second function in telomere replication during G-overhang maturation. Analysis of overhang structure after STN1 depletion revealed normal kinetics for telomerase-mediated extension in S phase but a delay in subsequent overhang shortening.

View Article and Find Full Text PDF

Mammalian CST (CTC1-STN1-TEN1) associates with telomeres and depletion of CTC1 or STN1 causes telomere defects. However, the function of mammalian CST remains poorly understood. We show here that depletion of CST subunits leads to both telomeric and non-telomeric phenotypes associated with DNA replication defects.

View Article and Find Full Text PDF

Chromosome end protection is essential to protect genome integrity. Telomeres, tracts of repetitive DNA sequence and associated proteins located at the chromosomal terminus, serve to safeguard the ends from degradation and unwanted double strand break repair. Due to the essential nature of telomeres in protecting the genome, a number of unique proteins have evolved to ensure that telomere length and structure are preserved.

View Article and Find Full Text PDF

Telomeres consist of an elaborate, higher-order DNA architecture, and a suite of proteins that provide protection for the chromosome terminus by blocking inappropriate recombination and nucleolytic attack. In addition, telomeres facilitate telomeric DNA replication by physical interactions with telomerase and the lagging strand replication machinery. The prevailing view has been that two distinct telomere capping complexes evolved, shelterin in vertebrates and a trimeric complex comprised of Cdc13, Stn1 and Ten1 (CST) in yeast.

View Article and Find Full Text PDF

Dna2 is a nuclease/helicase with proposed roles in DNA replication, double-strand break repair and telomere maintenance. For each role Dna2 is proposed to process DNA substrates with a 5'-flap. To date, however, Dna2 has not revealed a preference for binding or cleavage of flaps over single-stranded DNA.

View Article and Find Full Text PDF

Okazaki fragments are initiated by short RNA/DNA primers, which are displaced into flap intermediates for processing. Flap endonuclease 1 (FEN1) and Dna2 are responsible for flap cleavage. Replication protein A (RPA)-bound flaps inhibit cleavage by FEN1 but stimulate Dna2, requiring that Dna2 cleaves prior to FEN1.

View Article and Find Full Text PDF

Eukaryotic Okazaki fragments are initiated by a RNA/DNA primer, which is removed before the fragments are joined. Polymerase delta displaces the primer into a flap for processing. Dna2 nuclease/helicase and flap endonuclease 1 (FEN1) are proposed to cleave the flap.

View Article and Find Full Text PDF

Okazaki fragments contain an initiator RNA/DNA primer that must be removed before the fragments are joined. In eukaryotes, the primer region is raised into a flap by the strand displacement activity of DNA polymerase delta. The Dna2 helicase/nuclease and then flap endonuclease 1 (FEN1) are proposed to act sequentially in flap removal.

View Article and Find Full Text PDF

4a-Hydroxy-tetrahydrobiopterin dehydratase/DCoH is a bifunctional protein. In the cytoplasm it is an enzyme required for the regeneration of tetrahydrobiopterin, an essential cofactor for phenylalanine hydroxylase. In the nucleus it functions as a transcriptional coactivator by forming a 2:2 heterotetramer with the hepatic nuclear factor HNF1alpha (HNF1).

View Article and Find Full Text PDF