Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mammalian CST (CTC1-STN1-TEN1) associates with telomeres and depletion of CTC1 or STN1 causes telomere defects. However, the function of mammalian CST remains poorly understood. We show here that depletion of CST subunits leads to both telomeric and non-telomeric phenotypes associated with DNA replication defects. Stable knockdown of CTC1 or STN1 increases the incidence of anaphase bridges and multi-telomeric signals, indicating genomic and telomeric instability. STN1 knockdown also delays replication through the telomere indicating a role in replication fork passage through this natural barrier. Furthermore, we find that STN1 plays a novel role in genome-wide replication restart after hydroxyurea (HU)-induced replication fork stalling. STN1 depletion leads to reduced EdU incorporation after HU release. However, most forks rapidly resume replication, indicating replisome integrity is largely intact and STN1 depletion has little effect on fork restart. Instead, STN1 depletion leads to a decrease in new origin firing. Our findings suggest that CST rescues stalled replication forks during conditions of replication stress, such as those found at natural replication barriers, likely by facilitating dormant origin firing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433780PMC
http://dx.doi.org/10.1038/emboj.2012.215DOI Listing

Publication Analysis

Top Keywords

stn1 depletion
12
replication
11
replication restart
8
fork stalling
8
mammalian cst
8
ctc1 stn1
8
replication fork
8
depletion leads
8
origin firing
8
stn1
7

Similar Publications

STN1 Shields CTC1 From TRIM32-Mediated Ubiquitination to Prevent Cellular Aging.

Aging Cell

September 2025

Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.

The CST (CTC1-STN1-TEN1) complex, a single-stranded DNA (ssDNA) binding complex, is essential for telomere maintenance and genome stability. Depletion of either CTC1 or STN1 results in cellular senescence, while mutations in these components are associated with severe hereditary disorders. In this study, we demonstrate that the direct STN1-CTC1 interaction stabilizes CTC1 by preventing its degradation via TRIM32 mediated ubiquitination.

View Article and Find Full Text PDF

Loss of Ten1 in mice induces telomere shortening and models human dyskeratosis congenita.

Sci Adv

April 2025

Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.

Telomere length regulation is essential for genome stability as short telomeres can trigger cellular senescence and apoptosis constituting an integral aspect of biological aging. Telomere biology disorders (TBDs) such as dyskeratosis congenita (DC) are rare, inherited diseases with known mutations in at least 16 different genes encoding components of the telomere maintenance complexes. The precise role of TEN1, part of the CST complex (CTC1, STN1, and TEN1), and the consequences of its loss of function in vivo are not yet known.

View Article and Find Full Text PDF

To assess the immediate responses of the yeast cells to telomere defects, we employed the auxin-inducible degron (AID) enabling rapid depletion of essential (Rap1, Tbf1, Cdc13, Stn1) and non-essential (Est1, Est2, Est3) telomeric proteins. Using two variants of AID systems, we show that most of the studied proteins are depleted within 10-30 min after the addition of auxin. As expected, depletion of essential proteins yields nondividing cells, provided that the strains are cultivated in an appropriate carbon source and at temperatures lower than 28°C.

View Article and Find Full Text PDF

Conditional Depletion of STN1 in Mouse Embryonic Fibroblasts.

Bio Protoc

April 2024

Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.

The CTC1-STN1-TEN1 (CST) complex is a single-strand DNA-binding protein complex that plays an important role in genome maintenance in various model eukaryotes. Dysfunction of CST is the underlying cause of the rare genetic disorder known as Coats plus disease. In addition, down regulation of STN1 promotes colorectal cancer development in mice.

View Article and Find Full Text PDF

DNA replication stress, caused by various endogenous and exogenous agents, halt or stall DNA replication progression. Cells have developed diverse mechanisms to tolerate and overcome replication stress, enabling them to continue replication. One effective strategy to overcome stalled replication involves skipping the DNA lesion using a specialized polymerase known as PrimPol, which reinitiates DNA synthesis downstream of the damage.

View Article and Find Full Text PDF