98%
921
2 minutes
20
The two-dimensional 1T' phase of ReS2 has a unique structure and its electronic properties are independent of its thickness. These features distinguish ReS2 from other two-dimensional transition metal dichalcogenides (TMDCs) used as catalysts in the hydrogen evolution reaction (HER) and suggest that it may be a suitable alternative catalyst to the expensive Pt most commonly in this reaction. Similar to traditional TMDCs, the catalytic activity of ReS2 is mainly contributed by the edge sites, whereas the basal plane, which accounts for a large percentage of the surface area, has poor catalytic activity. Activation of the basal plane of ReS2 would be an ideal strategy by which to boost its catalytic performance. We used density functional theory calculations to show that the catalytic activity of the ReS2 basal plane can be efficiently activated by doping with transition metal (TM) atoms such as Mo, Cr, Mn, Fe, Co, Pt, Au and Ag. Our results indicate that doping with a TM not only significantly reduces the hydrogen adsorption free energy (ΔGH*) of ReS2 by tuning the adsorption behavior of the H atom on the ReS2 surface, but can also expose more active sites by introducing more unsaturated electrons. Pt-doped ReS2 showed the highest catalytic activity for the HER of all the TM-doped ReS2 systems investigated, with ΔGH* = 0, a low reaction barrier and an increased density of active sites on the basal plane. More importantly, ReS2 doped with the non-noble TMs Mo and Cr showed excellent HER catalytic activities comparable with those of Pt-doped ReS2. Our findings will help to guide the future design of new HER catalysts based on TMDCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr00997c | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, Rostock 18059, Germany.
Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.
View Article and Find Full Text PDFDalton Trans
September 2025
University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
Developing efficient, low-cost catalysts for oxygen reduction and evolution reactions (ORR and OER) is key to advancing metal-air batteries and regenerative fuel cells. In this study, nitrogen-doped binary metal (Mn and Ni) oxides (N-BMOs) and Pt-decorated N-BMOs were synthesised using three methods and tested as ORR and OER catalysts in alkaline media. Their physicochemical properties were characterised by XRD, N-sorption, TEM, and XPS, while their electrochemical performance was evaluated using voltammetry and impedance spectroscopy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China.
Electrochemical nitrogen fixation-a sustainable pathway for converting abundant N into NH using renewable energy-holds transformative potential for revolutionizing artificial nitrogen cycles. Nevertheless, even the state-of-the-art catalytic systems also suffer from inadequate N adsorption capacity, which critically limits ammonia production rates and Faradaic efficiency (FE). To overcome this bottleneck, we strategically leveraged the antiferroelectric properties of SnO to establish dipole-dipole interactions with N molecules, synergistically enhancing both N adsorption and activation kinetics.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China.
A polydopamine-glued g-CN/CoFeWO membrane, prepared one-pot synthesis, achieves complete sulfamethoxazole degradation through synergistic photocatalysis and PMS activation. It exhibits robust stability over 10 hours of continuous operation, maintaining high efficiency (97%) even in real municipal wastewater effluent, offering a novel and promising water purification strategy.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry and Sustainable Technology, University of Eastern Finland, Joensuu Campus, Yliopistokatu 7, FI-80100, Joensuu, Finland.
Accurate thermodynamic calculations for aluminum alkyls require proper treatment of low-frequency vibrations poorly described by the harmonic approximation (HA). Here, we present a systematic investigation of hindered rotation and out-of-plane bending in aluminum trichloride (ATC) and its methyl derivatives, employing advanced computational methods to perform anharmonic entropy corrections, such as torsional eigenvalue summation (TES), the extended two-dimensional torsion method (E2DT), the multi-structural approximation with torsional anharmonicity (MS-T), and Fourier grid Hamiltonian (FGH). Our results reveal distinct structure-dependent behaviors: monomers exhibit near-free methyl rotations where the HA overestimates entropy by 20-30 J K mol, while dimers show more hindered rotations adequately described by the HA around room temperature.
View Article and Find Full Text PDF