Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In most bacteria, β-lactam antibiotics inhibit the last cross-linking step of peptidoglycan synthesis by acylation of the active-site Ser of d,d-transpeptidases belonging to the penicillin-binding protein (PBP) family. In mycobacteria, cross-linking is mainly ensured by l,d-transpeptidases (LDTs), which are promising targets for the development of β-lactam-based therapies for multidrug-resistant tuberculosis. For this purpose, fluorescence spectroscopy is used to investigate the efficacy of LDT inactivation by β-lactams but the basis for fluorescence quenching during enzyme acylation remains unknown. In contrast to what has been reported for PBPs, we show here using a model l,d-transpeptidase (Ldt) that fluorescence quenching of Trp residues does not depend upon direct hydrophobic interaction between Trp residues and β-lactams. Rather, Trp fluorescence was quenched by the drug covalently bound to the active-site Cys residue of Ldt. Fluorescence quenching was not quantitatively determined by the size of the drug and was not specific of the thioester link connecting the β-lactam carbonyl to the catalytic Cys as quenching was also observed for acylation of the active-site Ser of β-lactamase BlaC from . Fluorescence quenching was extensive for reaction intermediates containing an amine anion and for acylenzymes containing an imine stabilized by mesomeric effect, but not for acylenzymes containing a protonated β-lactam nitrogen. Together, these results indicate that the extent of fluorescence quenching is determined by the status of the β-lactam nitrogen. Thus, fluorescence kinetics can provide information not only on the efficacy of enzyme inactivation but also on the structure of the covalent adducts responsible for enzyme inactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.9b00023DOI Listing

Publication Analysis

Top Keywords

fluorescence quenching
24
acylation active-site
8
active-site ser
8
fluorescence
8
ldt fluorescence
8
trp residues
8
β-lactam nitrogen
8
enzyme inactivation
8
quenching
7
tryptophan fluorescence
4

Similar Publications

Development of smartphone-based AIE fluorescence-quenching immunochromatographic sensors for the detection of illicit drugs in various complex sample matrices.

Anal Bioanal Chem

September 2025

GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.

Illicit drug abuse poses a significant global threat to public health and social security, highlighting the urgent need for rapid, sensitive, and versatile detection technologies. To address the limitations of traditional chromatographic techniques-such as high costs and slow response times-and the drawbacks of conventional immunochromatographic sensors (ICS), including low sensitivity and non-intuitive signal outputs, a fluorescence-quenching ICS (FQICS) was developed. This sensor leverages fluorescence resonance energy transfer (FRET) between aggregation-induced emission fluorescent microspheres (AIEFMs) and gold nanoparticles (AuNPs).

View Article and Find Full Text PDF

A kinetic and spectroscopic study of tetrahydrodipicolinate N-succinyltransferase (DapD) from Serratia marcescens and its inactivation by Cu.

Arch Biochem Biophys

September 2025

Department of Chemistry and Biochemistry, Howard College of Arts and Sciences, Samford University, 800 Lakeshore Drive, Birmingham, AL, USA, 35229. Electronic address:

Tetrahydrodipicolinate N-succinyltransferase (DapD) catalyzes the reaction of tetrahydrodipicolinate (THDP) and succinyl-CoA to form (S)-2-(3-carboxypropanamido)-6-oxoheptanedioic acid and coenzyme A. The enzyme is in the diaminopimelate-lysine biosynthesis pathway which produces two metabolites necessary for the survival and growth of pathogenic bacteria. Since lysine is an essential amino acid to humans, DapD is a potentially safe target for antibiotic therapies.

View Article and Find Full Text PDF

The global proliferation of antibiotic-resistant Staphylococcus aureus, particularly methicillin-resistant Staphylococcus aureus (MRSA), highlights the urgent need for innovative antivirulence strategies. The redundancy and multiplicity of virulence factors produced by S. aureus necessitate interventions capable of concurrently targeting multiple virulence mechanisms.

View Article and Find Full Text PDF

Long-wavelength emission carbon dots as ratiometric fluorescent and colorimetric dual-mode sensors for environmental sensing and bioimaging of hypochlorite.

J Hazard Mater

August 2025

Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China. Electronic address:

For the first time, long-wavelength red emission carbon dots (R-CDs) were prepared as ratiometric fluorescent and colorimetric dual-mode sensors for detecting ClO using a simple one-step hydrothermal method. R-CDs exhibited intrinsic red fluorescence at 587 nm. Upon interaction with ClO, a new and enhanced green fluorescence at 535 nm was observed, which was attributed to resulting from the oxidation of surface hydroxyl (-OH) groups to carbonyl (CO) groups.

View Article and Find Full Text PDF

Oxidative stress, driven by excess reactive oxygen species (ROS), induces widespread biomolecular damage through the oxidation of lipids, proteins, and nucleic acids, contributing to the onset and progression of numerous inflammatory diseases. Among these, 4-hydroxynonenal (4-HNE) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) are widely recognized as biomarkers of lipid peroxidation and oxidative DNA damage, respectively. In this study, we have investigated the potential of lactoferrin, an innate immune glycoprotein with established antioxidant and anti-inflammatory properties, to modulate the activity of these reactive byproducts.

View Article and Find Full Text PDF