98%
921
2 minutes
20
Nanocellulose has functionalities suitable for efficient sensor transducer surface design including crystallinity, biocompatible and high specific surface area. Here we explore two forms of nanocellulose as transducer surfaces to enable colorimetric detection of human neutrophil elastase (HNE), and a wide range of inflammatory diseases. A deep eutectic solvent (DES) was utilized to mediate formation of cotton cellulose nanocrystals (DCNCs) employed to prepare a peptide-cellulose conjugate as a protease sensor of HNE. The tetrapeptide-cellulose analog on DCNC is contrasted with an analogous derivative of TEMPO-oxidized wood cellulose nanofibrils (WCNFs). DCNCs showed greater degree of substitution of HNE tetrapeptide and sensitivity to the elastase than WCNFs, despite the smaller surface area and pore sizes. XRD models revealed the higher crystallinity and larger crystallite sizes of DCNCs, indicating the well-arranged cellulose chains for immobilization of the tetrapeptide on (110) lattice reflections of cellulose crystals. The sensitivity of DCNCs-based colorimetric sensor was less than 0.005 U/mL, which would provide a convenient, sensitive sensor applicable for improved colorimetric point of care protease biomarker detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2019.04.027 | DOI Listing |
JAMA Netw Open
September 2025
Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City.
Importance: Advances in diagnostics have enabled the detection of more gastrointestinal pathogens, but misuse of diagnostics can lead to inappropriate antibiotic use and excess financial burdens. Ensuring appropriate use of diagnostics is crucial for optimizing patient care and promoting stewardship of health care resources.
Objective: To elicit parents' and clinicians' perspectives on expectations for care of pediatric diarrhea with a focus on diagnostic testing and to evaluate the potential for an electronic clinical decision support tool (ECDST) to improve appropriate use of diagnostics.
J Fluoresc
September 2025
School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, P.R. China.
The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
September 2025
Klinikum Fürth, Friedrich-Alexander-University Erlangen- Nürnberg, Fürth, Germany.
Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.
View Article and Find Full Text PDFLasers Med Sci
September 2025
Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.
To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).
View Article and Find Full Text PDFArch Pharm Res
September 2025
College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
Atopic dermatitis (AD) is an inflammatory skin disease that produces a variety of inflammatory cytokines and chemokines. Chitinase-3-like protein 1 (CHI3L1, YKL-40) significantly contributes to AD-associated inflammatory response and is highly expressed in patients with AD. Therefore, this study elucidated the effects and potential mechanisms of human YKL-40 antibody on AD-affected skin.
View Article and Find Full Text PDF