Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A microencapsulated flame retardant was used in order to produce a flame retardant nonwoven substrate. Melamine-formaldehyde polymer-shell microcapsules, containing Afflamit PLF 280 (resorcinol bis(diphenyl phosphate)) as the core substance, were coated by an outer thermoplastic wall (polystyrene (PS) or poly(methyl methacrylate)), before being applied to a core/sheet-type bi-component PET/co-PET spunbond nonwoven substrate using impregnation. The outer wall of the microcapsules was heated to the softening temperature of the thermoplastic shell in order to be bonded onto the textile fibres. The thermal stability of the microcapsules was examined using thermogravimetric analysis. The textile samples were observed with a scanning electron microscope, and the flame retardancy performance was evaluated using the NF P92-504 standard. The results show that the composition of the outer polymeric shell affected the thermal stability of the microcapsules, since the particles with a PS shell are more stable. Furthermore, the microcapsules were more located at the nonwoven surface without affecting the thickness of the samples. Based on the results of the NF P92-504 test, the flame spread rate was relatively low for all of the tested formulations. Only the formulation with a low content of PS was classified M2 while the others were M3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432294PMC
http://dx.doi.org/10.3390/polym8070267DOI Listing

Publication Analysis

Top Keywords

flame retardant
8
nonwoven substrate
8
thermal stability
8
stability microcapsules
8
microcapsules
6
application flame-retardant
4
flame-retardant double-layered
4
shell
4
double-layered shell
4
shell microcapsules
4

Similar Publications

In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.

View Article and Find Full Text PDF

Pollution can have lasting effects beyond the exposure period, potentially impacting multiple generations. Polybrominated diphenyl ether (PBDE) flame retardants are widespread, including in oceans, yet their multigenerational impacts remain poorly understood. We investigated whether BDE-99, a ubiquitous PBDE, induces neurobehavioral and molecular effects across generations in the fish .

View Article and Find Full Text PDF

Tetrabromobisphenol A (TBBPA), a widely used flame retardant in textiles and electronics, poses toxicological risks through both environmental and indoor exposures. Biomonitoring studies have detected significant TBBPA levels in prenatal environments, including cord blood, raising concerns about developmental impacts. Using zebrafish as a model, this study addresses critical gaps in understanding how developmental TBBPA exposures perturb regulatory pathways that govern dorsoventral patterning.

View Article and Find Full Text PDF

Dual Lithium Salt Derived Favorable Interface Layer Enables High-Performance Polycarbonate-Based Composite Electrolytes for Stable and Safe Solid Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.

View Article and Find Full Text PDF

Bisphenol A (BPA), a synthetic organic compound widely used in plastic products, toys, water pipes, and flame retardants, has been linked to the onset and progression of various cancers. This study explores the association between BPA and bladder cancer using bioinformatics approaches. We applied the ssGSEA algorithm to calculate BPA-related scores in TCGA-BLCA cohort and classify patients based on this.

View Article and Find Full Text PDF