98%
921
2 minutes
20
Introduction And Aim: Olmesartan medoxomil (OLM) is an antihypertensive drug with low oral bioavailability due to extensive first-pass metabolism. This study aimed to prepare transetho somes (TEs) for enhancing the transdermal delivery of OLM to avoid its oral problems.
Methods: TE formulae were prepared utilizing 51.31 full factorial design using various surfactants (SAAs) and different phospholipid-to-SAA ratios. The formulae were characterized regarding their entrapment efficiency percentage (EE%), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and the amount of drug released after 6 hours (Q6h). Design Expert software was employed to select the optimum formula.
Results: The optimum formula (TE14) had an EE% of 58.50%±1.30%, PS of 222.60±2.50 nm, PDI of 0.11±0.06, ZP of -20.80±0.30 mV, and Q6h of 67.40%±0.20%. In addition, TE14 was compared to transferosomes (TFs) in terms of elasticity and was found to show higher deformability index. Further, evaluation of ex vivo permeation using both rat and shed snake skin showed higher permeability of TE14 compared to TFs and OLM suspension. Confocal laser scanning microscopy confirmed the capability of the fluorolabeled TE14 to penetrate deep within the skin, while the histopathological study confirmed its safety. TE14 successfully maintained normal blood pressure values of rats up to 24 hours. Moreover, TE14 showed superiority in dermatokinetic study when compared with drug suspension.
Conclusion: Taken together, the obtained results confirmed the potential of employing TEs as a successful carrier for the transdermal delivery of OLM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421897 | PMC |
http://dx.doi.org/10.2147/IJN.S196771 | DOI Listing |
J Drug Target
September 2025
Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, INDIA.
Natural phytoconstituents such as betanin and curcumin have attracted interest for their significant antioxidant and anti-inflammatory properties. Their therapeutic efficacy is notably constrained by inadequate bioavailability and reduced skin permeability. The current study developed an ethosome-based gel system for the delivery of betanin and curcumin, with the objective of improving transdermal penetration and providing sustained anti-inflammatory effects.
View Article and Find Full Text PDFInt J Pharm
September 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit
Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, India.
Purpose: The present study aimed to fabricate microneedles (MNs) for transdermal delivery of insulin. Chitosan-conjugated carboxy phenyl boronic acid polymer was synthesized and characterized to load insulin in the form of nanoparticles.
Methods: Optimized insulin nanoparticles (ILN-NPs) were loaded into MN arrays by micromolding, and the resulting MN patches were characterized by scanning electron microscopy (SEM) and mechanical failure tests.
Mater Today Bio
October 2025
Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Zhejiang Chinese Medical University, 75 Jinxiu Road, Wenzhou, 325000, China.
Transdermal drug delivery systems (TDDS) represent a non-invasive approach to achieve controlled drug release through the skin barrier, offering stable plasma concentrations while avoiding gastrointestinal and hepatic metabolism. However, the skin barrier poses physical challenges, making it difficult for most drugs to penetrate deep tissues using TDDS. This review systematically summarizes the research progress in nanocarrier design, physical technology application, and artificial intelligence (AI)-driven TDDS optimization design aimed at overcoming the key problem of skin barrier penetration.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China. Electronic address:
Skin aging serves as a critical indicator of systemic health decline. Despite Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) being a key therapeutic target, mechanistic understanding remains incomplete and potent, safe activators are lacking, hindering clinical progress. This study proposes the "Barrier-Skin-Systemic Aging Axis," demonstrating that epidermal barrier disruption accelerates aging via PPARγ suppression.
View Article and Find Full Text PDF