Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Obesity is a major risk factor for many chronic diseases, including diabetes, fatty livers, and cancer. Expansion of the adipose mass has been shown to be related to adipogenic differentiation of adipose-derived mesenchymal stem cells (ASCs). However, the underlying mechanism of this effect has yet to be elucidated. We found that osteopontin (OPN) is downregulated in ASCs and adipose tissues of obese mice and overweight human beings because of methylation on its promoter, indicating that OPN may affect the development of obesity. Silencing of OPN in wild-type ASCs promotes adipogenic differentiation, while reexpression of OPN reduced adipogenic differentiation in OPN ASCs. The role of extracellular OPN in ASC differentiation was further demonstrated by supplementation and neutralization of OPN. Additionally, OPN suppresses adipogenic differentiation in ASCs through the C/EBP pathways. Consistent with these results, by intravenous injection of OPN-expressing adenovirus to the mice, we found OPN can delay the development of obesity and improve insulin sensitivity. Therefore, our study demonstrates an important role of OPN in regulating the development of obesity, indicating OPN might be a novel target to attenuate obesity and its complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398038PMC
http://dx.doi.org/10.1155/2019/1238153DOI Listing

Publication Analysis

Top Keywords

adipogenic differentiation
20
development obesity
12
opn
11
differentiation adipose-derived
8
adipose-derived mesenchymal
8
mesenchymal stem
8
stem cells
8
indicating opn
8
differentiation
6
adipogenic
5

Similar Publications

Oil Delivery to Bovine Satellite Cells in Cultivated Meat by Soy Protein Colloidosomes.

ACS Appl Mater Interfaces

September 2025

Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel.

Cultivating fat for edible tissue presents significant challenges, due to the high costs associated with growth and differentiation factors, alongside the poor viability of adipocytes resulting from cell clustering. Additionally, there is a gap in research regarding the rapid accumulation of fats within cells. To that end, this study presents the development of a biodegradable soy protein colloidosome system for an efficient application: direct delivery of oils into bovine satellite cells, enabling rapid intracellular fat accumulation without the need for adipogenic differentiation.

View Article and Find Full Text PDF

Multidimensional Regulation of Bone Marrow Niche Using Extracorporeal Shock Wave Responsive Nanocomposites for Osteoporosis Therapy.

Small

September 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

Multidimensional modulation of the bone marrow niche represents a pivotal therapeutic strategy for bone-related disorders. However, its clinical translation remains challenging due to the inherent limitations imposed by the bone physiological barrier. Herein, a bone cavity-targeted nanocomposite (ZCD) is developed that can respond to extracorporeal shock wave (ESW), enabling triaxial regulation by inhibiting adipogenic differentiation, promoting osteogenic differentiation, and suppressing osteoclast activity.

View Article and Find Full Text PDF

Objective: To evaluate the roles of miR-137 and its target genes in lipid metabolism and prostate tumorigenesis.

Methods: We used a series of bioinformatic approaches to establish the relationship between miR-137 and its target genes. We mapped the metabolic pathways of interest in the Reactome database and identified the central target genes of miR-137 in this pathway using four platforms: Reactome, miRDB, miRmap, and TargetScan.

View Article and Find Full Text PDF

Targeting adipocyte differentiation with CRT0066101: activation of AMPK signaling in 3T3-L1 cells.

Front Pharmacol

August 2025

Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China.

Introduction: Obesity is characterized by excessive fat accumulation resulting from adipocyte hypertrophy and hyperplasia, with adipocyte differentiation being a central process driving these changes.

Methods: The anti-adipogenic effects of CRT0066101 (CRT), a pan-protein kinase D (PKD) inhibitor, were evaluated in 3T3-L1 adipocytes. Potential drug targets of CRT were predicted using network pharmacology analysis.

View Article and Find Full Text PDF

Adipose tissue reconstruction is of significant importance for both cosmetic procedures and therapeutic interventions. Current clinical strategies, including autologous adipose tissue grafting and the application of synthetic materials, still have limitations. Decellularized adipose tissue (DAT) hydrogel in combination with adipose-derived stem cells (ADSCs), has emerged as a superior alternative, because of the abundant sources and inherent adipose regeneration capacity.

View Article and Find Full Text PDF