Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Despite the tremendous therapeutic advances that have stemmed from somatic oncogenetics, survival of some cancers has not improved in 50 years. Osteosarcoma still has a 5-year survival rate of 66%. We propose the natural canine osteosarcoma model can change that: it is extremely similar to the human condition, except for being highly heritable and having a dramatically higher incidence. Here we reanalyze published genome scans of osteosarcoma in three frequently-affected dog breeds and report entirely new understandings with immediate translational indications.

Results: First, meta-analysis revealed association near FGF9, which has strong biological and therapeutic relevance. Secondly, risk-modeling by multiple logistic regression shows 22 of the 34 associated loci contribute to risk and eight have large effect sizes. We validated the Greyhound stepwise model in our own, independent, case-control cohort. Lastly, we updated the gene annotation from approximately 50 genes to 175, and prioritized those using cross-species genomics data. Mostly positional evidence suggests 13 genes are likely to be associated with mapped risk (including MTMR9, EWSR1 retrogene, TANGO2 and FGF9). Previous annotation included seven of those 13 and prioritized four by pathway enrichment. Ten of our 13 priority genes are in loci that contribute to risk modeling and thus can be studied epidemiologically and translationally in pet dogs. Other new candidates include MYCN, SVIL and MIR100HG.

Conclusions: Polygenic osteosarcoma-risk commonly rises to Mendelian-levels in some dog breeds. This justifies caninized animal models and targeted clinical trials in pet dogs (e.g., using CDK4/6 and FGFR1/2 inhibitors).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425649PMC
http://dx.doi.org/10.1186/s12864-019-5531-6DOI Listing

Publication Analysis

Top Keywords

genome scans
8
dog breeds
8
loci contribute
8
contribute risk
8
pet dogs
8
risk-modeling dog
4
osteosarcoma
4
dog osteosarcoma
4
osteosarcoma genome
4
scans individuals
4

Similar Publications

Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.

Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.

View Article and Find Full Text PDF

Background: India's indigenous sheep breeds have evolved under extreme and diverse agro-ecological pressures, yet the genomic basis of their resilience and local adaptation remains poorly understood.

Method: This study combines genomic inbreeding estimates, runs of homozygosity (ROH), population structure analyses, and composite selection scans to investigate three native Indian breeds-Changthangi, Deccani, and Garole-within a panel of nine breeds that also includes populations from Africa (Ethiopian Menz), East and South Asia (Tibetan, Chinese Merino, Bangladesh Garole, Bangladesh East), and Europe (Suffolk).

Results: ROH and heterozygosity estimates revealed strong contrasts: Bangladesh East sheep exhibited high genomic inbreeding (F≈14.

View Article and Find Full Text PDF

Background: Paragangliomas (PGLs) are rare neuroendocrine tumors originating from the extra-adrenal autonomic paraganglia with a strong genetic background. pathogenic variants are associated with the highest rate of malignancy in PGLs. Most head and neck paragangliomas (HNPGs) are asymptomatic and benign, and multiple metastases are rare.

View Article and Find Full Text PDF

Uncovering differential tolerance to deletions versus substitutions with a protein language model.

Cell Syst

September 2025

Diabetes Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA; Department of Bioengineering & Therapeutic

Deep mutational scanning (DMS) experiments have been successfully leveraged to understand genotype to phenotype mapping. However, the overwhelming majority of DMS have focused on amino acid substitutions. Thus, it remains unclear how indels differentially shape the fitness landscape relative to substitutions.

View Article and Find Full Text PDF

Modification of starch traits in commercial wheat through TaWaxy gene editing.

Carbohydr Polym

November 2025

State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Amylose content (AC) is a key determinant of wheat quality, and the TaWaxy gene determined amylose synthesis with a dose-dependent effect on AC. In this study, the TaWOX5 gene, which significantly enhances wheat transformation efficiency, was combined with CRISPR/SpCas9 system to generate TaWaxy mutants in a commercial winter wheat Jimai 22. Seven transgene-free mutant types were produced, compared to only three transgene-free mutants in the spring wheat variety Ningchun 4.

View Article and Find Full Text PDF