A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Uncovering differential tolerance to deletions versus substitutions with a protein language model. | LitMetric

Uncovering differential tolerance to deletions versus substitutions with a protein language model.

Cell Syst

Diabetes Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA; Department of Bioengineering & Therapeutic

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep mutational scanning (DMS) experiments have been successfully leveraged to understand genotype to phenotype mapping. However, the overwhelming majority of DMS have focused on amino acid substitutions. Thus, it remains unclear how indels differentially shape the fitness landscape relative to substitutions. To further our understanding of the relationship between substitutions and deletions, we leveraged a protein language model to analyze every single amino acid deletion in the human proteome. We discovered hundreds of thousands of sites that display opposing behavior for deletions versus substitutions: sites that can tolerate being substituted but not deleted or vice versa. We identified secondary structural elements and sequence context to be important mediators of differential tolerance. Our results underscore the value of deletion-substitution comparisons at the genome-wide scale, provide novel insights into how substitutions could systematically differ from deletions, and showcase the power of protein language models to generate biological hypotheses in silico.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cels.2025.101373DOI Listing

Publication Analysis

Top Keywords

protein language
12
differential tolerance
8
deletions versus
8
versus substitutions
8
language model
8
amino acid
8
substitutions
6
uncovering differential
4
deletions
4
tolerance deletions
4

Similar Publications