98%
921
2 minutes
20
In this study, graphene nanosheet-supported ultrafine Cu nanoparticles (NPs) encapsulated with thin mesoporous silica (Cu-GO@m-SiO) materials are fabricated with particle sizes ranging from 60 to 7.8 nm and are systematically investigated for the oxidative coupling of amines to produce biologically and pharmaceutically important imine derivatives. Catalytic activity remarkably increased from 76.5% conversion of benzyl amine for 60 nm NPs to 99.3% conversion and exclusive selectivity of N-benzylidene-1-phenylmethanamine for 7.8 nm NPs. The superior catalytic performance along with the outstanding catalyst stability of newly designed catalysts are attributed to the easy diffusion of organic molecules through the porous channel of mesoporous SiO layers, which not only restricts the restacking of the graphene nanosheets but also prevents the sintering and leaching of metal NPs to an extreme extent through the nanoconfinement effect. Density functional theory calculations were performed to shed light on the reaction mechanism and to give insight into the trend of catalytic activity observed. The computed activation barriers of all elementary steps are very high on terrace Cu(111) sites, which dominate the large-sized Cu NPs, but are significantly lower on step sites, which are presented in higher density on smaller-sized Cu NPs and could explain the higher activity of smaller Cu-GO@m-SiO samples. In particular, the activation barrier for the elementary coupling reaction is reduced from 139 kJ/mol on flat terrace Cu(111) sites to the feasible value of 94 kJ/mol at step sites, demonstrating the crucial role of the step site in facilitating the formation of secondary imine products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b18675 | DOI Listing |
Biomater Res
September 2025
Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
Atherosclerosis is the leading cause of global cardiovascular morbidity and mortality associated with inflammatory and immunological mechanisms. Immunotherapy has demonstrated promising efficacy in the management of atherosclerosis. Nevertheless, certain immunotherapeutic approaches are associated with limitations, including suboptimal efficacy and non-negligible adverse effects.
View Article and Find Full Text PDFPlant Dis
September 2025
Hainan University, Haikou, Hainan, China;
Brown root rot, caused by Phellinus noxius, is a major threat to rubber tree cultivation, resulting in substantial economic losses. Traditional control methods, such as root irrigation with fungicides, are labor-intensive, water-consuming, and inefficient, particularly in regions with limited water resources. This study introduces fluorescent mesoporous silica nanoparticles (FL-MSNs) as a novel delivery platform for tebuconazole to target P.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China. Electronic address:
Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
The formation of carbinolamine represents the crucial initial step in the aldol reaction, specifically involving the interaction between p-nitrobenzaldehyde and acetone, facilitated by amine-catalyzed mesoporous silica nanoparticles (amine-MSN). In this process, a nitrogen atom from propylamine, which acts as the catalytic moiety, engages in the formation of a covalent bond with a carbon atom from acetone, leading to the generation of a carbinolamine intermediate. This reaction is significantly influenced by the presence of silanol groups located on the surface of the amine-MSN, which contribute to the catalytic activity.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.
Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.
Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.