Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Identifying the electronic behavior of metal-oxide interfaces is essential for understanding the origin of catalytic properties and for engineering catalyst structures with the desired reactivity. For a mechanistic understanding of hot electron dynamics at inverse oxide/metal interfaces, we employed a new catalytic nanodiode by combining Co3O4 nanocubes (NCs) with a Pt/TiO2 nanodiode that exhibits nanoscale metal-oxide interfaces. We show that the chemicurrent, which is well correlated with the catalytic activity, is enhanced at the inverse oxide/metal (CoO/Pt) interfaces during H2 oxidation. Based on quantitative visualization of the electronic transfer efficiency with chemicurrent yield, we show that electronic perturbation of oxide/metal interfacial sites not only promotes the generation of hot electrons, but improves catalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8fd00136gDOI Listing

Publication Analysis

Top Keywords

metal-oxide interfaces
12
hot electron
8
catalytic nanodiode
8
inverse oxide/metal
8
catalytic activity
8
interfaces
5
catalytic
5
enhanced hot
4
electron generation
4
generation inverse
4

Similar Publications

Room Temperature Flexible Gas Sensor Based on MOF-Derived Porous Carbon Skeletons Loaded with ZnO Nanoparticles and DMF Detection.

ACS Appl Mater Interfaces

September 2025

Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Overcoming the persistent challenges of high operating temperatures and poor selectivity in metal oxide semiconductor (MOS) gas sensors, this work enhances defect sites in the sensing material through heterostructure construction and builds mesoporous architectures using MOF-derived carbon skeletons as templates. The synergistic effects of multiple mechanisms significantly improve gas-sensing performance, successfully fabricating a ZnO/PCS flexible room-temperature gas sensor with exceptional room-temperature DMF detection capabilities. The nitrogen-containing porous carbon skeletons (PCSs) template shows a stable mesoporous microstructure with large pore volume.

View Article and Find Full Text PDF

pH-triggered Schottky heterojunctions for NIR-II-activated and tumor-specific pyroelectrodynamic and photothermal therapy.

J Colloid Interface Sci

September 2025

Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China. Electronic address:

Pyroelectrodynamic therapy (PEDT) of tumors faces challenges due to its low electrocatalytic efficiency at mild temperature and the potential for off-target toxicity to healthy tissue. To overcome these issues, we have engineered pyroelectric nanoparticles (NPs) that feature a pH-triggered heterojunction structure and tumor-selective reactive oxidative species (ROS) production, faclitating synergistic PEDT and mild photothermal therapy (PTT). Herein, molybdenum trioxide (MoO) was deposited in-situ on the surface of tetragonal BaTiO (tBT) to create tBT@MO.

View Article and Find Full Text PDF

Tailoring interfacial stability and ion kinetics via weakly-solvated fluorinated solvents for high-performance lithium metal batteries.

J Colloid Interface Sci

September 2025

School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of

High-voltage lithium metal batteries (LMBs) have emerged as ideal candidates for achieving high-energy-density energy storage devices. Notably, high-reactive lithium metal and high-voltage transition metal oxide cathodes require electrolytes with superior electrochemical stability and interfacial compatibility. Herein, a solvent chemistry electrolyte design strategy is proposed that a weakly-solvated fluorinated bis(2,2,2-trifluoroethyl) carbonate (TFEC) was introduced into carbonate electrolyte for enhanced high voltage performance.

View Article and Find Full Text PDF

Thermochemical energy storage using Mg(OH) is attractive due to its high energy density, low cost, and nontoxicity. However, its practical application is limited by the high dehydration temperature required to achieve sufficient reaction rates. Although metal salt additives are known to enhance dehydration kinetics, prior studies have mainly focused on powders, with limited research on pellets.

View Article and Find Full Text PDF

Polymorph-Induced Reducibility and Electron Trapping Energetics of Nb and W Dopants in TiO.

J Phys Chem C Nanomater Interfaces

August 2025

Cardiff Catalysis Institute, School of Chemistry, Translational Research Hub, Cardiff University, Maindy Road, Cardiff CF24 4HF, U.K.

Controlling the formation of electron polarons in TiO doped with transition metals is important for the design of transparent conducting oxides for high-efficiency photovoltaics and photocatalysts with tunable reaction selectivities. In this work, EPR spectroscopy is combined with Hubbard-corrected density functional theory (DFT+), with refined atomic-like Hubbard projectors, to show the sensitivity of charge compensation in substitutionally doped Nb-TiO and W-TiO with respect to the TiO polymorph (, anatase or rutile). Both EPR magnetic tensors and DFT+predicted Nb 4 and W 5 orbital occupancies show the formation of differing dopant charge states depending on the TiO polymorph, with nonmagnetic Nb and W in doped anatase and paramagnetic Nb and W in doped rutile.

View Article and Find Full Text PDF