Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dietary methionine restriction (MR) has been reported to extend lifespan, improve insulin sensitivity, reduce adiposity and inflammation response, and in particular, increase endogenous hydrogen sulfide (H2S) production. H2S is a critical anti-inflammatory molecule in the central nervous system and a gaseous signal molecule that mediates learning and memory function. Hence, the present study aimed to investigate whether MR can ameliorate the impairment of learning and memory function induced by obesity, and to clarify its possible mechanisms. C57BL/6J mice were fed a control diet or a high-fat (HF) diet to induce obesity, and were then fed a control diet (CON group, 4.2% fat, 0.86% methionine), a HF diet (HF group, 24% fat, 0.86% methionine), or an MR diet (MR group, 24% fat, 0.17% methionine) for 16 consecutive weeks. Our results showed that HF-induced obesity impaired learning and memory function, reduced H2S production in the hippocampus, cortex, and plasma, and increased plasma and hippocampal inflammation response in the mice. MR improved the impairment of learning and memory function accompanied by selective modulation of the expression of multiple related genes, reduced plasma and hippocampal inflammatory response, normalized H2S levels in the hippocampus, cortex, and plasma, up-regulated the mRNA and protein expression levels of cystathionine β-synthase in the hippocampus, and reduced hippocampal homocysteine level. These findings suggest that MR can ameliorate the impairment of learning and memory function, likely by increasing H2S production in the hippocampus.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8fo01922cDOI Listing

Publication Analysis

Top Keywords

learning memory
24
memory function
24
impairment learning
16
h2s production
12
dietary methionine
8
methionine restriction
8
function induced
8
induced obesity
8
inflammation response
8
ameliorate impairment
8

Similar Publications

During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.

View Article and Find Full Text PDF

This study investigated the learning strategy preferences of 11-month-old APP/PS1 double transgenic (Tg) mice, a well-established murine model of Alzheimer's disease (AD). APP/PS1 Tg and non-Tg control mice were serially trained in visual and hidden platform tasks in the Morris water maze. APP/PS1 Tg mice performed poorly in visual platform training compared with non-Tg mice but performed as well as non-Tg mice in hidden platform training.

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.

View Article and Find Full Text PDF

Limiting cognitive resources negatively impacts motor learning, but its cognitive mechanism is still unclear. Previous studies failed to differentiate its effect on explicit (or cognitive) and implicit (or procedural) aspects of motor learning. Here, we designed a dual-task paradigm requiring participants to simultaneously perform a visual working memory task and a visuomotor rotation adaptation task to investigate how cognitive load differentially impacted explicit and implicit motor learning.

View Article and Find Full Text PDF