98%
921
2 minutes
20
Segregation of homologous chromosomes in meiosis I is tightly regulated by their physical links, or crossovers (COs), generated from DNA double-strand breaks (DSBs) through meiotic homologous recombination. In budding yeast, three ZMM (Zip1/2/3/4, Mer3, Msh4/5) proteins, Zip2, Zip4, and Spo16, form a "ZZS" complex, functioning to promote meiotic recombination via a DSB repair pathway. Here, we identified the mammalian ortholog of Spo16, termed SPO16, which interacts with the mammalian ortholog of Zip2 (SHOC1/MZIP2), and whose functions are evolutionarily conserved to promote the formation of COs. SPO16 localizes to the recombination nodules, as SHOC1 and TEX11 do. SPO16 is required for stabilization of SHOC1 and proper localization of other ZMM proteins. The DSBs formed in SPO16-deleted meiocytes were repaired without COs formation, although synapsis is less affected. Therefore, formation of SPO16-SHOC1 complex-associated recombination intermediates is a key step facilitating meiotic recombination that produces COs from yeast to mammals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357729 | PMC |
http://dx.doi.org/10.1126/sciadv.aau9780 | DOI Listing |
Nucleic Acids Res
September 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.
BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.
View Article and Find Full Text PDFPLoS Genet
September 2025
Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France.
Unscheduled whole genome duplication (WGD), also described as unscheduled or non-physiological polyploidy, can lead to genetic instability and is commonly observed in human cancers. WGD generates DNA damage due to scaling defects between replication factors and DNA content. As a result DNA damage repair mechanisms are thought to be critical for ensuring cell viability and proliferation under these conditions.
View Article and Find Full Text PDFJ Med Chem
September 2025
Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9 Montréal, Québec, Canada.
DNA polymerase theta (Polθ) plays a critical role in repairing DNA double-strand breaks through microhomology-mediated end joining (MMEJ) and has emerged as a key synthetic lethal drug target in cancers with homologous recombination (HR) deficiencies. Its inhibition has shown a strong potential to synergize with PARP inhibitors, particularly in tumors with deleterious or mutations. Here, we describe the discovery and preclinical development of RP-2119, a selective, potent, and bioavailable Polθ ATPase inhibitor.
View Article and Find Full Text PDFNAR Cancer
September 2025
Department of Molecular Genetics and Microbiology, Duke University School of Medicine, 213 Research Drive, Durham, NC 27710, United States.
Treatment of patients with platinum-resistant ovarian cancer is a major clinical challenge. We found that high expression of a meiotic protein, Synaptonemal Complex Protein 2 (SYCP2), is associated with platinum resistance and tyrosine kinase ABL1 inhibitor sensitivity in ovarian cancer. We demonstrate that tyrosine kinase ABL1 inhibitors inhibit cancer cell proliferation more efficiently in ovarian cancer cell lines with SYCP2 overexpression.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China.
infections represent a significant public health concern. Despite their clinical relevance, the genetic determinants underlying bacterial fitness and virulence remain incompletely characterized. In this study, we systematically identified genes involved in host adaptation by generating a transposon mutant library and integrating a infection model with transposon sequencing (Tn-seq) technology.
View Article and Find Full Text PDF