98%
921
2 minutes
20
We have previously described the first Bayesian machine learning models from FDA-approved drug screens, for identifying compounds active against the Ebola virus (EBOV). These models led to the identification of three active molecules in vitro: tilorone, pyronaridine, and quinacrine. A follow-up study demonstrated that one of these compounds, tilorone, has 100% in vivo efficacy in mice infected with mouse-adapted EBOV at 30 mg/kg/day intraperitoneal. This suggested that we can learn from the published data on EBOV inhibition and use it to select new compounds for testing that are active in vivo. We used these previously built Bayesian machine learning EBOV models alongside our chemical insights for the selection of 12 molecules, absent from the training set, to test for in vitro EBOV inhibition. Nine molecules were directly selected using the model, and eight of these molecules possessed a promising in vitro activity (EC < 15 μM). Three further compounds were selected for an in vitro evaluation because they were antimalarials, and compounds of this class like pyronaridine and quinacrine have previously been shown to inhibit EBOV. We identified the antimalarial drug arterolane (IC = 4.53 μM) and the anticancer clinical candidate lucanthone (IC = 3.27 μM) as novel compounds that have EBOV inhibitory activity in HeLa cells and generally lack cytotoxicity. This work provides further validation for using machine learning and medicinal chemistry expertize to prioritize compounds for testing in vitro prior to more costly in vivo tests. These studies provide further corroboration of this strategy and suggest that it can likely be applied to other pathogens in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356859 | PMC |
http://dx.doi.org/10.1021/acsomega.8b02948 | DOI Listing |
Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.
View Article and Find Full Text PDFAm J Emerg Med
September 2025
University of Toronto, Rotman School of Management, Canada.
Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.
Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.
JMIR Res Protoc
September 2025
University of Nevada, Las Vegas, Las Vegas, NV, United States.
Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China.
Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.
View Article and Find Full Text PDFAm J Reprod Immunol
September 2025
Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.
Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.
Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.