98%
921
2 minutes
20
Food packaging is not only a simple protective barrier, but a real "active" component, which is expected to preserve food quality, safety and shelf-life. Therefore, the materials used for packaging production should show peculiar features and properties. Specifically, antimicrobial packaging has recently gained great attention with respect to both social and economic impacts. In this paper, the results obtained by using a polymer material functionalized by a small synthetic peptide as "active" packaging are reported. The surface of Polyethylene Terephthalate (PET), one of the most commonly used plastic materials in food packaging, was plasma-activated and covalently bio-conjugated to a bactenecin-derivative peptide named 1018K6, previously characterized in terms of antimicrobial and antibiofilm activities. The immobilization of the peptide occurred at a high yield and no release was observed under different environmental conditions. Moreover, preliminary data clearly demonstrated that the "active" packaging was able to significantly reduce the total bacterial count together with yeast and mold spoilage in food-dairy products. Finally, the functionalized-PET polymer showed stronger efficiency in inhibiting biofilm growth, using a strain isolated from food products. The use of these "active" materials would greatly decrease the risk of pathogen development and increase the shelf-life in the food industry, showing a real potential against a panel of microorganisms upon exposure to fresh and stored products, high chemical stability and re-use possibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387462 | PMC |
http://dx.doi.org/10.3390/ijms20030601 | DOI Listing |
Compr Rev Food Sci Food Saf
September 2025
Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
Microbial spoilage and oxidation are significant causes of food deterioration, contributing to food waste of up to 30%. To mitigate these losses, active food packaging is an effective solution. Considering the excellent properties of nanofibers produced by electrospinning, integrating active food packaging functionality with nanofiber technology offers an ideal approach enhancing preservation.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:
Development of effective, safe, and degradable food packaging is essential to meet the demands of consumers and to ensure the continued growth of the food industry. In this study, superabsorbent bioactive aerogels based on cellulose and polyvinyl alcohol combined with the antibacterial bioactive extracts extracted from Portulaca oleracea were fabricated for the preservation of chilled meats. The main physicochemical and mechanical properties of the bioactive aerogels were characterized and evaluated.
View Article and Find Full Text PDFCan Respir J
September 2025
Respiratory Medicine Department, The Fourth People's Hospital of Jinan, Jinan 250031, Shandong, China.
Aspergillus has become the second most common causative agent of invasive fungal infections and is the leading cause of death from fungal infections. English-language publications ranging from 1975 to 2022 collected from the Web of Science Core Collection database were analyzed visually using VOSviewer, R package Bibliometrix, Scimago graphic, Gephi, Pajek, and Microsoft Excel 365. Literature search using the advanced search function in WoSCC with the search formula "TS=(Aspergillus).
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Department of Food Science, Faculty of Food Science and Technology Natural Medicines and Products Research Laboratory, Institute of Bioscience (IBS) Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS) Universiti Putra Malaysia Selangor Serdang M
Pectin, a bioactive polysaccharide, was mixed with chitosan (CS) and blended with three essential oil formulations to prepare nanoemulsion-based edible coatings. Three nanoemulsion-based coatings, C, C, and C, comprising chitosan and pectin at ratios of 1:1, 1.25:1.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Environmentally friendly food packaging has emerged as a viable strategy to replace traditional plastic films. In this study, eugenol Pickering emulsion was constructed with konjac glucomannan (KGM) and tragacanth gum (GT) as stabilizers, and was introduced into the KGM/chitosan (CS) composite film by electrostatic action to develop a new type of active packaging film. Interfacial characterization revealed optimal emulsion stability at a 1:5 KGM-to-GT mass ratio.
View Article and Find Full Text PDF