98%
921
2 minutes
20
The mechanisms by which breast cancers progress from relatively indolent ductal carcinoma (DCIS) to invasive ductal carcinoma (IDC) are not well understood. However, this process is critical to the acquisition of metastatic potential. MAPK-interacting serine/threonine-protein kinase 1 (MNK1) signaling can promote cell invasion. NODAL, a morphogen essential for embryogenic patterning, is often reexpressed in breast cancer. Here we describe a MNK1/NODAL signaling axis that promotes DCIS progression to IDC. We generated MNK1 knockout (KO) or constitutively active MNK1 (caMNK1)-expressing human MCF-10A-derived DCIS cell lines, which were orthotopically injected into the mammary glands of mice. Loss of MNK1 repressed NODAL expression, inhibited DCIS to IDC conversion, and decreased tumor relapse and metastasis. Conversely, caMNK1 induced NODAL expression and promoted IDC. The MNK1/NODAL axis promoted cancer stem cell properties and invasion . The MNK1/2 inhibitor SEL201 blocked DCIS progression to invasive disease . In clinical samples, IDC and DCIS with microinvasion expressed higher levels of phospho-MNK1 and NODAL versus low-grade (invasion-free) DCIS. Cumulatively, our data support further development of MNK1 inhibitors as therapeutics for preventing invasive disease. SIGNIFICANCE: These findings provide new mechanistic insight into progression of ductal carcinoma and support clinical application of MNK1 inhibitors to delay progression of indolent ductal carcinoma to invasive ductal carcinoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513674 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-18-1602 | DOI Listing |
Bioimpacts
August 2025
Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: Mitochondrial DNA (mtDNA) copy number variations have been reported in multiple human cancers. Previous studies indicate that mitochondrial retrograde signaling regulates , which plays a key role in tumorigenesis, including regulating apoptosis antagonizing transcription factor (). This study investigates the expression of and in relation to mtDNA copy number in invasive ductal carcinoma (IDC) of the breast.
View Article and Find Full Text PDFJ Environ Pathol Toxicol Oncol
September 2025
Department of Clinical Laboratory Medicine, Fujian Medical University, Fuzhou, China.
Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
September 2025
Kangbuk Samsung Hospital, Seoul, Korea (South), Republic of.
Background: Iron metabolism may influence breast cancer development; however, links between iron-related biomarkers and breast cancer remain inconclusive. Given differences in iron status by menopausal status, we examined associations of ferritin and other iron biomarkers, with breast cancer incidence, stratified by menopausal status, in a Korean screening cohort.
Methods: This cohort study included 140,747 Korean women screened for breast cancer from 2011-2020.
Cell Mol Biol (Noisy-le-grand)
September 2025
Assistant Professor of General Surgery, Department of Surgery, College of Medicine, University of Duhok, Kurdistan Region, Iraq.
Hormonal status and lymphatic invasion are two important prognostic factors among cases of breast cancer. This study aims to assess and evaluate the hormonal receptor status and lymph node involvement among female breast cancer patients in Duhok city, Kurdistan region, Iraq. A retrospective cross-sectional study was conducted, involving 156 diagnosed cases of breast cancer who had undergone surgical treatment and laboratory investigations at Azadi Teaching Hospital and Duhok Private Hospital for 30 months.
View Article and Find Full Text PDFJ Biomed Opt
December 2025
University of Toronto, Department of Medical Biophysics, Temerty Faculty of Medicine, Toronto, Ontario, Canada.
Significance: Tumor tissues exhibit contrast with healthy tissue in circular degree of polarization (DOP) images via higher magnitude circular DOP values and increased helicity-flipping. This phenomenon may enable polarimetric tumor detection and surgical/procedural guidance applications.
Aim: Depolarization metrics have been shown to exhibit differential responses to healthy and cancer tissue, whereby tumor tissues tend to induce less depolarization; however, the understanding of this depolarization-based contrast remains limited.