Mitochondrial calcium dysfunction contributes to autophagic cell death induced by MPP via AMPK pathway.

Biochem Biophys Res Commun

Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:

Published: February 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Prevailing evidence suggests that abnormal autophagy and mitochondrial dysfunction participate in the process of PD. However, many damages of neuronal functions are regulated by intracellular Ca signaling and the contribution of mitochondrial Ca to the process of neurodegeneration is still unclear. MPP, the metabolite of a neurotoxin MPTP, causes symptom of PD in animal models by selectively destroying dopaminergic neurons in substantia nigra. Here we report that mitochondrial Ca uniporter (MCU) participated in MPP-induced autophagic cell death in SH-SY5Y cells. Pharmacological agonist of MCU or exogenous expressed MCU can partially reduce MPP-induced autophagic cell death. Down-regulation of MCU enhanced autophagic cell death via AMPK activation, which was independent of Beclin1 and PI3K. These findings show that the mitochondrial calcium dyshomeostasis contributes to MPP-induced neuronal degeneration, and MCU may be a potential therapeutic target of PD through the prevention of pathological autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.12.148DOI Listing

Publication Analysis

Top Keywords

autophagic cell
16
cell death
16
mitochondrial calcium
8
dopaminergic neurons
8
neurons substantia
8
substantia nigra
8
mpp-induced autophagic
8
mitochondrial
5
mcu
5
calcium dysfunction
4

Similar Publications

Ilimaquinone-induced lipophagy diminishes lipid accumulation via AMPK activation.

BMB Rep

September 2025

Research Institute for Korean Medicine, Pusan National University, Yangsan 50612; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 05612, Korea.

Lipid metabolism plays an important role in aging and longevity, and lipophagy-a specialized form of autophagy that targets lipid vesicles-regulates lipid homeostasis and alleviates metabolic diseases such as metabolic dysfunctionassociated steatotic liver disease (MASLD). Ilimaquinone (IQ), a sesquiterpene extracted from the sea, is well-known for its various biological effects; however, its effects on lipid metabolism and longevity have not yet been elucidated. In this study, IQ acted in a dose-dependent manner, extending the lifespan of Caenorhabditis elegans (C.

View Article and Find Full Text PDF

SiO NP promotes allergic gastritis induced by degranulation of mouse MC9 cell through AQP4-mediated impairment of SIRT3-TFAM deacetylation and mitochondrial autophagy.

J Hazard Mater

September 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR C

Silicon dioxide nanoparticles (SiO NPs) are a novel material with a wide range of applications whose cumulative effects in the body pose certain health risks. The types of gastric injuries caused by different-sized SiO NPs and their mechanisms, however, remain unclear. Based on this, we established a mouse subchronic exposure model (10 mg/kg/d, 21 consecutive days of tube-feeding) with different SiO NP sizes (50, 300, and 1000 nm) in conjunction with in vitro MC9 and BMMCs models (160 μg/mL exposure for 24 h) to explore the gastric injury mechanisms.

View Article and Find Full Text PDF

20-Deoxyingenol attenuated doxorubicin-induced cardiotoxicity by promoting autolysosome degradation through the UCHL3-TFEB pathway.

Phytomedicine

September 2025

Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China; Heart

Background: Impaired autophagic flux is an essential contributor to doxorubicin (DOX)-induced cardiotoxicity (DIC). TFEB is recognized as a key regulator of DOX-induced autolysosome accumulation; however, the mechanisms by which DOX suppresses TFEB expression remain unclear. 20-Deoxyingenol (20-DOI) is a small-molecule compound whose potential protective effects against DIC has not yet been elucidated.

View Article and Find Full Text PDF

Background: Hyperthermia (HT), while a cancer treatment approach, isn't always effective alone. Therefore, identifying hyperthermia enhancers is crucial. We demonstrated that Mito-TEMPO ([2-[(1-Hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) amino]-2-oxoethyl]-triphenylphosphanium, MT) acts as a potent thermosensitizer, promoting cell death in human cervical cancer (HeLa) cells.

View Article and Find Full Text PDF

Background: While autophagy is pivotal in antimicrobial defense, its regulatory role in Talaromyces marneffei (TM) infected bronchial epithelium remains elusive.

Objective: To elucidate the impact of TM infection on autophagy in bronchial epithelial cells and to identify the key molecular regulators involved in this process.

Methods: Primary computational screening identified core autophagy modulators.

View Article and Find Full Text PDF