98%
921
2 minutes
20
Manipulation of light below the diffraction limit forms the basis of nanophotonics. Metals can confine light at the subwavelength scale but suffer from high loss of energy. Recent reports have theoretically demonstrated the possibility of light confinement below the diffraction limit using transparent dielectric metamaterials. Here, nanoscale light confinement (<λ/20) in transparent dielectric materials is shown experimentally through a luminescent nanosystem with rationally designed dielectric claddings. Theoretically, green light with a wavelength of 540 nm has a transmission of 98.8% when passing through an ultrathin NaYF /NaGdF superlattice cladding (thickness: 6.9 nm). Unexpectedly, the complete confinement of green emission (540 nm) by such an ultrathin dielectric cladding is directly observed. FDTD calculations are used to confirm that the ultrathin dielectric cladding has negligible influence on the transmission of propagating light, but extraordinary confinement of evanescent waves. This will provide new opportunities for nanophotonics by completely averting the use of metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201806341 | DOI Listing |
Nat Photonics
June 2025
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Metasurfaces provide an ideal platform for optical sensing because they produce strong light-field confinement and enhancement over extended regions that allow us to identify deep-subwavelength layers of organic and inorganic molecules. However, the requirement of using external light sources involves bulky equipment that hinders point-of-care applications. Here we introduce a plasmonic sensor with an embedded source of light provided by quantum tunnel junctions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:
We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.
View Article and Find Full Text PDFEur J Neurol
September 2025
Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
Background: No standardized strategy for integrating κ-free light chain (κ-FLC) index into routine cerebrospinal fluid (CSF) diagnostics has yet been established.
Objective: To determine agreement between κ-FLC index and CSF-restricted oligoclonal bands (OCB), and to identify κ-FLC index range where second-line OCB testing is needed.
Methods: A retrospective analysis was conducted in patients who had κ-FLC measurement between December 2023 and December 2024 at the Medical University of Innsbruck.
Pressure ulcer (PU) cause metabolic disorders and ischemia via prolonged pressure, leading to secondary infection, inflammation, and vascular neuropathy. However, existing therapies rely on microenvironment, HO, low repair efficiency, and lack efficient collaborative therapy. Herein, a confined multifunctional TiO/Pt nanozyme is developed via atomic layer deposition for PUs repair.
View Article and Find Full Text PDF