98%
921
2 minutes
20
Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have opened up a world of possibilities for regenerative medicine and novel cell-based therapeutics. Now, over a decade later, robust reprogramming and expansion and differentiation protocols have been developed, and iPSC-derived cells have been used in a wide variety of small and large animal models to treat many different diseases. Furthermore, the first iPSC derivatives are on their way into clinical trials. In this line, (i) GMP-compliant generation, cultivation, and differentiation, (ii) preclinical efficacy and safety, as well as (iii) ethical and regulatory compliance of stem cell research represent important aspects that need to be evaluated for proper clinical translation of iPSCs and their derivatives. In this review article, we provide an overview of the current advances and challenges of the clinical translation of iPSC-derived blood cells and highlight the most pressing problems that have to be overcome in the next years. Stem Cells Translational Medicine 2019;8:332-339.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431684 | PMC |
http://dx.doi.org/10.1002/sctm.18-0134 | DOI Listing |
Genome Biol
September 2025
Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310029, China.
Metagenomic analyses of microbial communities have unveiled a substantial level of interspecies and intraspecies genetic diversity by reconstructing metagenome-assembled genomes (MAGs). The MAG database (MAGdb) boasts an impressive collection of 74 representative research papers, spanning clinical, environmental, and animal categories and comprising 13,702 paired-end run accessions of metagenomic sequencing and 99,672 high quality MAGs with manually curated metadata. MAGdb provides a user-friendly interface that users can browse, search, and download MAGs and their corresponding metadata information.
View Article and Find Full Text PDFBMC Psychol
September 2025
Institute of Psychology, University of Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany.
Background: Competence and control beliefs are core self-evaluations with increasing value as predictors (e.g., in clinical, organizational, environmental, and educational psychology), and they are assumed to have a universal core that is shared across cultures.
View Article and Find Full Text PDFFundam Clin Pharmacol
October 2025
Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
This review highlights the integration of drug repurposing and nanotechnology-driven delivery strategies as innovative approaches to enhance the antifungal activity of statins against mucosal candidiasis, providing a framework for future translational research and clinical application. The rising prevalence of antifungal resistance and virulence factors of Candida albicans underscore the limitations of current therapies. Statins, commonly used as lipid-lowering agents, have emerged as attractive repurposed drug candidates due to their ability to interfere with fungal ergosterol biosynthesis and Ras-mediated signaling pathways.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Department of Medical Genetics and Prenatal Diagnostics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.
View Article and Find Full Text PDF