98%
921
2 minutes
20
Bioremediation offers a sustainable approach for removal of polycyclic aromatic hydrocarbons (PAHs) from the environment; however, information regarding the microbial communities involved remains limited. In this study, microbial community dynamics and the abundance of the key gene (PAH-RHDα) encoding a ring hydroxylating dioxygenase involved in PAH degradation were examined during degradation of phenanthrene in a podzolic soil from the site of a former timber treatment facility. The 10,000-fold greater abundance of this gene associated with Gram-positive bacteria found in phenanthrene-amended soil compared to unamended soil indicated the likely role of Gram-positive bacteria in PAH degradation. In contrast, the abundance of the Gram-negative PAHs-RHDα gene was very low throughout the experiment. While phenanthrene induced increases in the abundance of a small number of OTUs from the Actinomycetales and Sphingomonadale, most of the remainder of the community remained stable. A single unclassified OTU from the family increased ~20-fold in relative abundance, reaching 32% of the total sequences in amended microcosms on day 7 of the experiment. The relative abundance of this same OTU increased 4.5-fold in unamended soils, and a similar pattern was observed for the second most abundant PAH-responsive OTU, classified into the genus. Furthermore, the relative abundance of both of these OTUs decreased substantially between days 7 and 17 in the phenanthrene-amended and control microcosms. This suggests that their opportunistic phenotype, in addition to likely PAH-degrading ability, was determinant in the vigorous growth of dominant PAH-responsive OTUs following phenanthrene amendment. This study provides new information on the temporal response of soil microbial communities to the presence and degradation of a significant environmental pollutant, and as such has the potential to inform the design of PAH bioremediation protocols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258822 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.02815 | DOI Listing |
Oecologia
September 2025
Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL, 36849, USA.
Understanding changes to local communities brought about by biological invasions is important for conserving biodiversity and maintaining environmental stability. Scale insects (Hemiptera: Coccoidea) are a diverse group of insects well known for their invasion potential and ability to modify local abundance of multiple insect groups. Here, we tested how the presence of crape myrtle bark scale (Acanthococcus lagerstroemiae, CMBS), an invasive felt scale species, seasonally impacted local insect abundance, biodiversity, and community structure on crape myrtle trees.
View Article and Find Full Text PDFJ Immunother Cancer
September 2025
Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of California, Irvine, California, USA
Background: γδ T cells possess unique immunological features including tissue tropism, major histocompatibility complex-independent antigen recognition, and hybrid T/natural killer cell properties that make them promising candidates for cancer immunotherapy. However, the therapeutic potential of Vδ1 γδ T cells, particularly when engineered with chimeric antigen receptors (CARs), remains underexplored in solid tumors such as pancreatic cancer (PC), largely due to their low abundance in peripheral blood and challenges in ex vivo expansion. This study aims to directly compare the preclinical safety and efficacy among CAR-engineered Vδ1 γδ T cells, Vδ2 γδ T cells, and conventional αβ T cells.
View Article and Find Full Text PDFJ Adv Res
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address: tangtao@za
Introduction: Microencapsulated pyraclostrobin (PYR-CS) has gained widespread adoption in agriculture owing to its extended efficacy and reduced risks for non-target organisms. However, knowledge remains limited regarding its degradation in soil and effects on soil microorganisms.
Objectives: This study investigates the hypothesis that microencapsulation alters pyraclostrobin degradation and reshapes soil microbial communities compared with conventional formulations, including emulsifiable concentrate (PYR-EC) and technical material (PYR-TC).
Diabetes Metab J
September 2025
Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China.
Background: Contrast-induced acute kidney injury (CIAKI) is the third cause of hospital-acquired acute kidney injury and diabetes mellitus (DM) was identified as a risk factor for CIAKI. However, the molecular mechanism underlying DM-CIAKI remains unclear, which needs further investigation.
Methods: DM-CIAKI models of mice and cells were established.
J Hazard Mater
September 2025
Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan. Electronic address:
Particulate matter emitted from heavy industries is a major source of atmospheric metals in the North China Plain (NCP). In this study, submicron particles (0.1-1.
View Article and Find Full Text PDF