Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The increasing number of severe infections with multi-drug-resistant pathogens worldwide highlights the need for alternative treatment options. Given the pivotal role of phagocytes and especially alveolar macrophages in pulmonary immunity, we introduce a new, cell-based treatment strategy to target bacterial airway infections. Here we show that the mass production of therapeutic phagocytes from induced pluripotent stem cells (iPSC) in industry-compatible, stirred-tank bioreactors is feasible. Bioreactor-derived iPSC-macrophages (iPSC-Mac) represent a highly pure population of CD45CD11bCD14CD163 cells, and share important phenotypic, functional and transcriptional hallmarks with professional phagocytes, however with a distinct transcriptome signature similar to primitive macrophages. Most importantly, bioreactor-derived iPSC-Mac rescue mice from Pseudomonas aeruginosa-mediated acute infections of the lower respiratory tract within 4-8 h post intra-pulmonary transplantation and reduce bacterial load. Generation of specific immune-cells from iPSC-sources in scalable stirred-tank bioreactors can extend the field of immunotherapy towards bacterial infections, and may allow for further innovative cell-based treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269475PMC
http://dx.doi.org/10.1038/s41467-018-07570-7DOI Listing

Publication Analysis

Top Keywords

mass production
8
bacterial airway
8
airway infections
8
cell-based treatment
8
stirred-tank bioreactors
8
infections
5
bioreactor-based mass
4
production human
4
human ipsc-derived
4
ipsc-derived macrophages
4

Similar Publications

Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).

View Article and Find Full Text PDF

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Design and Synthesis of Structurally Novel Acridospiroisoxazole Derivatives and Their Antifungal Activity Study.

Chem Biodivers

September 2025

Key Lab of Natural Product Chemistry and Application at Universities of Education, Department of Xinjiang Uygur Autonomous Region, School of Chemistry and Chemical Engineering, Yili Normal University, Xinjiang, China.

The persistent threat posed by phytopathogenic fungi to agricultural systems underscores the critical need for novel fungicides. Here, we synthesized and characterized a series of novel acridospiroisoxazole derivatives (H1-H36) using H/C NMR and mass spectrometry. The absolute configuration of compound H23 was confirmed using single-crystal x-ray diffraction analysis.

View Article and Find Full Text PDF

Nontargeted Screening of Fingermark Residue Using Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry for Future Use in Forensic Applications.

J Am Soc Mass Spectrom

September 2025

Nontargeted Separations Laboratory, Chemistry Department, William & Mary, Integrated Science Center 1053, 540 Landrum Drive, Williamsburg, Virginia 23188, United States.

Fingerprints are routinely used as evidence in forensic investigations. Fingermarks, any mark left by a donor whether a complete print or not, include sweat and oil excreted by the donor. The chemical components of fingermarks are typically analyzed by gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Synthesis of Quaternary Ammonium Derivatives of Eugenol and Their Antifungal Mechanism against Wood-Decaying Fungi.

J Agric Food Chem

September 2025

College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045,

To discover novel preservatives for treating wood-decaying fungi, 48 novel eugenol quaternary ammonium salt derivatives were designed and synthesized. Among them, compounds , , , , , , and showed remarkable antifungal activity against (), affording EC values ranging from 2.11-7.

View Article and Find Full Text PDF