Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional molybdenum-disulfide (MoS2) catalysts can achieve high catalytic activity for the hydrogen evolution reaction upon appropriate modification of their surface. The intrinsic inertness of the compound's basal planes can be overcome by either increasing the number of catalytically active edge sites or by enhancing the activity of the basal planes via a controlled creation of sulfur vacancies. Here, we report a novel method of activating the MoS2 surface using swift heavy ion irradiation. The creation of nanometer-scale structures by an ion beam, in combination with the partial sulfur depletion of the basal planes, leads to a large increase of the number of low-coordinated Mo atoms, which can form bonds with adsorbing species. This results in a decreased onset potential for hydrogen evolution, as well as in a significant enhancement of the electrochemical current density by over 160% as compared to an identical but non-irradiated MoS2 surface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr04696dDOI Listing

Publication Analysis

Top Keywords

basal planes
12
swift heavy
8
heavy ion
8
ion irradiation
8
hydrogen evolution
8
mos2 surface
8
highly active
4
active single-layer
4
single-layer mos
4
mos catalysts
4

Similar Publications

Unlocking Hydrogen Spillover: Dynamic Behavior and Advanced Applications.

Acc Chem Res

September 2025

Division of Materials and Manufacturing Science, Graduate School of Engineering, The University of Osaka, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

ConspectusHydrogen spillover, the simultaneous diffusion of protons and electrons, has recently emerged as a key phenomenon in the functionalization of hydrogen in cutting-edge research fields. Its occurrence has been found to significantly impact hydrogen-related fields of science, such as catalysis, reduction, and hydrogen storage. Since the discovery of hydrogen spillover more than half a century ago, although many scientists have reported its unique properties and have attempted to utilize them, no practical advanced applications have been established yet.

View Article and Find Full Text PDF

Left ventricular (LV) non-compaction (NC) is a rare ventricular phenotype characterized by a thin compacted epicardial layer and an extensive non-compacted endocardial layer with prominent LV trabeculations and deep intertrabecular recesses. According to the recent literature, no information is available regarding the abnormalities of the aortic valve annulus (AVA) in LVNC. Therefore, the aim of the present study was to perform a detailed analysis of the AVA by three-dimensional speckle-tracking echocardiography (3DSTE) in LVNC patients and to compare the findings with matched healthy controls.

View Article and Find Full Text PDF

Artificial Intelligence-Based Echocardiography in Pulmonary Arterial Hypertension.

Chest

August 2025

Stanford University, Division of Cardiovascular Medicine, Department of Medicine, Palo Alto, CA; Stanford Cardiovascular Institute, Palo Alto, CA. Electronic address:

Background: Echocardiography is central when assessing pulmonary hypertension (PH), but manual interpretation can be time-consuming and prone to error.

Research Question: Is a fully automated deep learning (DL) workflow in echocardiography reliable when assessing PH?

Study Design And Methods: The study had two parts: the first determined the bias and precision of DL reads using Us2.ai software version 1.

View Article and Find Full Text PDF

Photocatalytic water splitting for hydrogen production is an attractive renewable energy technology, but the oxygen evolution reaction (OER) at the anode is severely constrained by a high overpotential. The two-dimensional vdW ferromagnetic material FeGeTe, with its good stability and excellent metallic conductivity, has potential as an electrocatalyst, but its sluggish surface catalytic reactivity limits its large-scale application. In this work, we adapted DFT calculations to introduce surface Te vacancies to boost OER performance of the FeGeTe (001) surface.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs) are valuable as solid lubricants because of their layered structure, which allows for easy shearing along the basal planes. Using Density Functional Theory (DFT), we conducted a first-principles study of the sliding properties of several TMD bilayers: MoS2, MoTe2, WS2, WSe2, VS2, VSe2, TaS2, TaSe2, TiS2, TiSe2, HfS2, ZrS2, MoS2WS2, and MoS2VS2. Given the crucial role of van der Waals (vdW) interactions in accurately describing the interlayer interactions in TMD bilayers, we employed vdW-corrected DFT functionals.

View Article and Find Full Text PDF