98%
921
2 minutes
20
The performance of a highly sensitive strain sensor based on nonlinear four-wave mixing (FWM) using a fiber Bragg grating (FBG) is investigated. The power change due to the wavelength shift induced by very small strain over the FBG is significantly magnified by a higher order FWM process. Strain sensitivity of 5.547 dBm/μϵ is achieved and minimum wavelength shift of 2.18×10 nm (which corresponds to a strain of 1.80×10 μϵ) is detected with uniform FBG, whereas in case of chirped FBG (CFBG) strain sensitivity of 0.3 dBm/μϵ with minimum detectable wavelength shift of 4×10 nm (which corresponds to a strain of 0.033 μϵ) is obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.57.009388 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
The fine-tuning of the (photo)physical properties of molecular photoswitches remains an active area of research, and recently, the incorporation of heterocycles into photoswitch scaffolds has emerged as an effective strategy in this vein. To assess the influence that heterocyclic rings have on hydrazone-based systems, we synthesized a series of photoswitches and examined the impact that heterocycles have on the switching efficiency. TD-DFT calculations and structure-property analyses revealed that heterocycles with basic nitrogen and secondary hydrogen-bonding sites (e.
View Article and Find Full Text PDFTop Magn Reson Imaging
October 2025
BIOSPACE LAB, Nesles-la-Vallée, France.
Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.
Conjugated polymer nanoparticles (CPNs), especially poly(-phenylene ethynylene) nanoparticles (PPE-NPs), are promising candidates for bio-imaging due to their high photostability, adjustable optical characteristics, and biocompatibility. Despite their potential, the fluorescence mechanisms of these nanoparticles are not yet fully understood. In this work, we modeled a spherical PPE-NP in a water environment using 30 PPE dimer chains.
View Article and Find Full Text PDFAnalyst
September 2025
School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 200433, China.
Mercury(II) ions (Hg) are one of the most common and highly toxic heavy metal ions, which can contaminate the environment and damage the human health. Therefore, the precise detection of trace Hg concentration is particularly important. Herein, gold nanoparticles-enhanced silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor was developed for the highly sensitive detection of Hg ions.
View Article and Find Full Text PDFLuminescence
September 2025
School of Textile Science and Engineering, Wuyi University, Jiangmen, Guangdong, China.
Acidochromic fluorescent membranes have garnered significant research interest owing to their potential in real-time environmental monitoring and smart sensing applications. However, the rational design of membranes to optimize their structure-property interplay for enhanced acidochromic performance remains further explored. Herein, we prepared various stimulus-responsive micro/nanofibrous membranes using electrospinning technology by incorporating a fluorescent small molecule (TPECNPy-2) with thermoplastic polyurethane (TPU) to obtain specific properties.
View Article and Find Full Text PDF