98%
921
2 minutes
20
Purpose: Metrics of the brain network architecture derived from resting-state fMRI have been shown to provide physiologically meaningful markers of IQ in children with epilepsy. However, traditional measures of functional connectivity (FC), specifically the Pearson correlation, assume a dominant linear relationship between BOLD time courses; this assumption may not be valid. Mutual information is an alternative measure of FC which has shown promise in the study of complex networks due to its ability to flexibly capture association of diverse forms. We aimed to compare network metrics derived from mutual information-defined FC to those derived from traditional correlation in terms of their capacity to predict patient-level IQ.
Materials And Methods: Patients were retrospectively identified with the following: (1) focal epilepsy; (2) resting-state fMRI; and (3) full-scale IQ by a neuropsychologist. Brain network nodes were defined by anatomic parcellation. Parcellation was performed at the size threshold of 350 mm, resulting in networks containing 780 nodes. Whole-brain, weighted graphs were then constructed according to the pairwise connectivity between nodes. In the traditional condition, edges (connections) between each pair of nodes were defined as the absolute value of the Pearson correlation coefficient between their BOLD time courses. In the mutual information condition, edges were defined as the mutual information between time courses. The following metrics were then calculated for each weighted graph: clustering coefficient, modularity, characteristic path length, and global efficiency. A machine learning algorithm was used to predict the IQ of each individual based on their network metrics. Prediction accuracy was assessed as the fractional variation explained for each condition.
Results: Twenty-four patients met the inclusion criteria (age: 8-18 years). All brain networks demonstrated expected small-world properties. Network metrics derived from mutual information-defined FC significantly outperformed the use of the Pearson correlation. Specifically, fractional variation explained was 49% (95% CI: 46%, 51%) for the mutual information method; the Pearson correlation demonstrated a variation of 17% (95% CI: 13%, 19%).
Conclusion: Mutual information-defined functional connectivity captures physiologically relevant features of the brain network better than correlation.
Clinical Relevance: Optimizing the capacity to predict cognitive phenotypes at the patient level is a necessary step toward the clinical utility of network-based biomarkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217888 | PMC |
http://dx.doi.org/10.1155/2018/6142898 | DOI Listing |
J Neurosci
September 2025
Psychiatry, University of Minnesota, Minneapolis, Minnesota 55455
Deep brain stimulation (DBS) is an emerging treatment for otherwise treatment-refractory psychiatric disorders. It can produce remarkable clinical results in expert hands, but has not fared as well in controlled, multisite trials. That difficulty with scaling up arises in part because DBS' mechanisms are poorly understood, meaning that it is difficult to objectively identify patients likely to respond and/or to customize stimulation to match individual patients' needs.
View Article and Find Full Text PDFCytokine Growth Factor Rev
September 2025
Shandong University of Traditional Chinese Medicine, Jinan 250355, China; The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China. Electronic address:
This review summarizes the biological properties of key myokines (Irisin, Apelin, CLCF1, and Myostatin) and osteokines (Osteocalcin, Sclerostin, FGF23 and the RANKL/OPG system). This work provides an in-depth analysis of the age-related network imbalance mechanism characterized by "downregulation of protective factors (Irisin, CLCF1, and uncarboxylated Osteocalcin) - upregulation of pro-degenerative factors (Myostatin, Sclerostin, and FGF23) - inflammation-driven amplification", and reveals the mechanism by which this network imbalance contributes to the comorbidity of sarcopenia, osteoporosis, and neurodegenerative diseases. Furthermore, the review evaluates the intersecting regulatory networks and molecular pathways through which myo-osteogenic factors modulate neurotrophic factors (BDNF, NGF and GDNF), and proposes intervention strategies based on these intersecting regulatory networks.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
September 2025
Department of Neuroscience and Experimental Therapeutics, Penn State College of Medicine, Hershey, Pennsylvania, USA.
Background: Prenatal alcohol exposure (PAE) causes fetal alcohol spectrum disorder (FASD) and is associated with various cognitive and sensory impairments, including olfactory dysfunction. While both genetic and environmental factors contribute to olfactory dysfunction, PAE is considered a significant factor affecting brain development, including the olfactory system. In this study, we investigated the impact of PAE on the developing olfactory bulb (OB), specifically focusing on OB RGCs-radial glial cells that give rise to OB projection neurons.
View Article and Find Full Text PDFBiol Pharm Bull
September 2025
Computational and Biological Learning Laboratory, University of Cambridge, Cambridge CB21PZ, United Kingdom.
Neuroimaging in rodents holds promise for advancing our understanding of the central nervous system (CNS) mechanisms that underlie chronic pain. Employing two established, but pathophysiologically distinct rodent models of chronic pain, the aim of the present study was to characterize chronic pain-related functional changes with resting-state functional magnetic resonance imaging (fMRI). In Experiment 1, we report findings from Lewis rats 3 weeks after Complete Freund's adjuvant (CFA) injection into the knee joint (n = 16) compared with the controls (n = 14).
View Article and Find Full Text PDFPhotobiomodul Photomed Laser Surg
September 2025
Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA.
The current study sought to explore the impact of a novel noninvasive treatment called transcranial photobiomodulation (PBM) on resting-state functional connectivity (rsFC) of the cerebellum in individuals with a history of repetitive head acceleration events (RHAEs). RHAEs are associated with cumulative neurological compromise, including chronic alterations in rsFC; however, few treatments have been investigated to mitigate these effects. A recent study by our team demonstrated that PBM treatment led to improvements in measures of balance and motor function in adults with RHAE exposure.
View Article and Find Full Text PDF