98%
921
2 minutes
20
Ecological soil systems (ESSs) are usually used to remove nitrogen from wastewater. Due to the poor denitrification performance of traditional ecological soil systems (ESSs), this study proposes a two-stage water distribution system to improve the nitrogen removal. The effects of different distribution ratios on the system treatment effect were studied in an intermittent operation mode. After determining the optimal distribution ratio and intermittent operation conditions, the dynamics of system inflow, outflow, and nitrogen removal were monitored. Theoretical analysis of the denitrification mechanism was carried out. The results showed that the optimum water distribution ratio was 2: 1, and a mean total nitrogen removal rate of 60.42% was achieved, which is 23.09% greater than that is typically achieved by the single-section ecological system. Under optimum distribution ratio conditions, the system also demonstrated effective removal of chemical oxygen demand (COD), total phosphorus (TP) and ammonia nitrogen (NH-N), allowing the effluent to satisfy China's urban sewage treatment plant level B emission standards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2018.10.014 | DOI Listing |
J Hazard Mater
September 2025
Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, College of Forestry & College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China.
Pollutants from industrial emissions and traffic accumulate in urban soils as road dust, carrying heavy metals (HMs) posing ecological and health risks. Magnetic susceptibility (MS), sensitive to ferromagnetic minerals, enables rapid HM contamination assessment. This study developed the Modified Dual-Threshold MS Evaluation Plot for Soil Contamination (M-Plot) using χ and χ% indices.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, PR China. Electronic address: wj
Difenoconazole (DFC) is a commonly used triazole fungicide known for its high efficiency and environmental persistence. A thorough understanding of its environmental behavior, particularly sorption in soil, is critical to obtain a comprehensive assessment of the ecological risk of DFC. In this study, three soils with distinct physicochemical properties (brown soil, cinnamon soil, and fluvo-aquic soil) were used to elucidate the adsorption mechanisms of DFC on soil.
View Article and Find Full Text PDFFungal Biol
October 2025
Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir
Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.
View Article and Find Full Text PDFFungal Biol
October 2025
University of Warsaw, Faculty of Biology, Białowieża Geobotanical Station, Sportowa 19, 17-230, Białowieża, Poland. Electronic address:
Wild mushrooms can be an important source of protein and essential amino acids, however very little is known about the environmental factors affecting the content of these compounds. In our study, we investigated the influence of soil properties (soil type, C/N ratio, pH) and tree stand characteristics (tree diversity, canopy cover, understory cover, and the proportion of deciduous trees) on total protein and essential amino acids (Valine, Leucine, Isoleucine, Phenylalanine, Lysine, Methionine, Arginine, Histidine) contents in seven wild-growing mushroom species (Macrolepiota procera, Rhodocolybia butyracea, Russula cyanoxantha, R.heterophylla, Lactifluus vellereus, Armillaria mellea s.
View Article and Find Full Text PDFEnviron Res
September 2025
China Construction Fourth Engineering Bureau Fifth Construction Engineering Co., Ltd. Nanxin Road, Nanshan District, Shenzhen, 518000, China. Electronic address:
The production of phosphogypsum (PG), calcium carbide slag (CS), and red mud (RM) in global industrial development imposes serious environmental issues. Utilizing CS and PG as curing agents and incorporating RM as a soil substitute can facilitate the solid waste resource utilization. However, few studies have investigated the synergistic effects of PG and CS on the stabilization of RM and soil.
View Article and Find Full Text PDF