98%
921
2 minutes
20
To protect human health and the environment (namely ecosystems), international air quality protocols and guidelines, like the Gothenburg protocol (1999) and the 2001 EU Air Quality Directive (NECD), conveyed national emission ceilings for atmospheric pollutants (Directive 2001/81/EC), including the reduction of sulfur (S) and nitrogen (N) emissions by 2010. However, to what degree this expected reduction in emissions had reflections at the ecosystem level (i.e. pollutant levels reaching and impacting ecosystems and their organisms) remains unknown. Here, we used lichens as ecological indicators, together with reported air and precipitation pollutant concentrations, to determine and map the consequences of the S and N atmospheric emission's reduction, during the implementation of the 2001 Directive (in 2002 and 2011), due primarily to the industrial-sector. The study area is a mixed-land-use industrialized Mediterranean agroforest ecosystem, in southwest Europe. The reduction of S emissions (2002-2011) was reflected at the ecosystem level, as the same S-declining trend was observed in atmospheric measurement stations and lichens alike (-70%), indicating that most S deposited to the ecosystem had an industrial origin. However, this was not the case for N with a slight N-reduction near industrial facilities, but mostly N-deposition in lichens increased in areas dominated by agricultural land-uses. Taken together, these results highlight the importance of going beyond emissions estimation and modeling, to assess the success of the implementation of the NECD in lowering pollutant accumulation in living organisms and their environment. This can only be achieved by measuring pollutant deposition at the ecosystem level (e.g. living organisms). By doing so, we were able to show that the 2001 NECD was successful in reducing S concentrations from Industry, whereas N remains a challenge. Despite the small reduction in N-emissions, deposition into ecosystems did not reflect these changes as agriculture and transport sectors must reduce NH and NO emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.08.059 | DOI Listing |
Environ Toxicol Chem
September 2025
Univ. Savoie Mont Blanc, CNRS. EDYTEM.
The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.
View Article and Find Full Text PDFArch Microbiol
September 2025
School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.
The inhibitory effects of Lactiplantibacillus plantarum on inflammatory responses are known, but its action mechanisms in oxidative stress, immunomodulation, and intestinal homeostasis remain of interest. Accordingly, we investigated the protective effects of Lactiplantibacillus plantarum SCS2 (L. plantarum SCS2) against sodium dextran sulfate (DSS)-induced colitis in mice as well as elucidated its impact on inflammation, oxidative stress, and intestinal microbiota.
View Article and Find Full Text PDFSci Prog
September 2025
School of International Finance and Trade, Shanghai International Studies University, Shanghai, China.
To explore the alleviating effect of digital supply chain finance (DSCF) on financing constraints experienced by small- and medium-sized enterprises (SMEs), with a view to promoting the digital transformation of enterprises. This observational study utilizes data from Chinese listed enterprises. The study's primary focus is on a selection of SRDI (abbreviation for "specialized, refined, distinctive, and innovative") enterprises in the electronics and machinery industries from 2013 to 2020.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
College of Life Sciences, Northwest Normal University, Lanzhou, China.
Nitrogen leaching is a major pathway of nitrogen fertilizer loss. Although arbuscular mycorrhizal (AM) fungi are known to reduce nitrogen leaching by improving plant nitrogen uptake, the soil-based mechanisms remain unclear. A pot experiment was conducted using a randomized complete block design, with four nitrogen levels (0, 3.
View Article and Find Full Text PDFInt J Vitam Nutr Res
August 2025
Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210028 Nanjing, Jiangsu, China.
Background: Dietary interventions have exhibited promise in restoring microbial balance in chronic kidney disease. A low-protein calorie-restricted diet can reduce kidney injury in diabetic rodents. However, whether the renoprotective effects of this dietary intervention in murine diabetic kidney disease models are linked to gut microbiota modulation remains to be determined.
View Article and Find Full Text PDF