98%
921
2 minutes
20
Fouling release coatings (FRCs) are today the main environment-friendly alternative to traditional self-polishing coatings, that continuously release biocides and/or heavy metals into water. FRCs are available on the market as environmentally friendly AF paints and most of them do not contain bioactive agents, however no complete and reliable assessment of their environmental impact has yet been carried out. Only few literature data proving their AF efficacy combined with a demonstrated lack of toxicological effects are available. Ecotoxicological bioassays are commonly used to predict the potential environmental impact of traditional AF paints. Standardized methodologies to obtain leaching products from biocide-based paints are available, while few studies propose experimental methods to assess the potential effects of biocide-free FRCs leachates on non-target organisms. The aim of this work is to propose an experimental protocol to obtain leaching products from biocide-free FRCs in order to evaluate the potential release of substances having toxic effects, by means of an ecotoxicological bioassay. Two ecotoxicological end-points with different sensitivity levels were considered (multi-end-point approach). Five silicone-based commercial coatings were used: their leaching products were collected after different immersion times following the developed experimental method and then two ecotoxicological end-points were evaluated on II stage nauplii of the crustacean Amphibalanus amphitrite as model organism. Moreover, chemical analyses were performed on leachates collected after each immersion time, focusing on the presence of metals in leaching products. From the results obtained from the bioassay, even if not indicative of the real environmental impact of FRCs, a release of toxic substances was observed from tested coatings during early immersion stages, likely to affect the exposed model organism. The potential leaching toxicity of the five tested products was compared. No clear correspondence could be identified between the concentrations of metals detected in leachates and the obtained ecotoxicological data, thus suggesting that other active components might be released by FRCs responsible for the toxic effects pointed out on A. amphitrite larvae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2018.09.024 | DOI Listing |
J Am Chem Soc
September 2025
National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Physical Science and Technology, College of Energy, School of Optoelectronic Science and Engineering, Soochow University, Suzhou, 215000, P. R. China.
Polymer additives exhibit unique advantages in suppressing lead leaching from perovskite solar cells (PSCs). However, polymers tend to excessively aggregate in the perovskite film, which hinders comprehensive encapsulation and disrupts charge transport efficiency, degrading lead leakage inhibition and device performance. Herein, a polymer dynamic soft encapsulation strategy driven by molecular extrusion is introduced to mitigate lead leakage in PSCs, achieved through the incorporation of poly(propylene adipate) (PPA) as a multifunctional additive in the perovskite formulation.
View Article and Find Full Text PDFJ Org Chem
September 2025
Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
The denitrogenation of tetrazoles is typically performed using transition-metal catalysts at high temperatures due to the inherent stability of the tetrazole group. In this work, we present, for the first time, an electrochemical method for denitrogenating tetrazoles at room temperature. This method employs a sacrificial zinc anode and a platinum cathode in a solvent mixture of acetonitrile and water under a constant current in an undivided cell.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
College of Life Sciences, Northwest Normal University, Lanzhou, China.
Nitrogen leaching is a major pathway of nitrogen fertilizer loss. Although arbuscular mycorrhizal (AM) fungi are known to reduce nitrogen leaching by improving plant nitrogen uptake, the soil-based mechanisms remain unclear. A pot experiment was conducted using a randomized complete block design, with four nitrogen levels (0, 3.
View Article and Find Full Text PDFACS Omega
September 2025
College of Materials and Chemical Engineering, Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, Anhui 237012, P. R. China.
Photo-Fenton oxidation, as a promising wastewater treatment technology, suffers from double barriers: the sluggish Fenton catalytic rate of transition metal ions and inefficient visible light absorption, both of which severely constrain the performance enhancement of catalytic systems. Therefore, accelerating electron transfer processes and broadening optical absorption spectra have become critical scientific challenges for practical implementation. Herein, a composite catalyst system based on Au-Ag-Cu trimetallic species codoped on hydroxyapatite (HAp) was reported via an ion/ligand impregnation method.
View Article and Find Full Text PDF