98%
921
2 minutes
20
Amyloid-β (Aβ) plaques are a prominent pathological hallmark of Alzheimer's disease (AD). They consist of aggregated Aβ peptides, which are generated through sequential proteolytic processing of the transmembrane protein amyloid precursor protein (APP) and several Aβ-associated factors. Efficient clearance of Aβ from the brain is thought to be important to prevent the development and progression of AD. The ubiquitin-proteasome system (UPS) is one of the major pathways for protein breakdown in cells and it has been suggested that impaired UPS-mediated removal of protein aggregates could play an important role in the pathogenesis of AD. To study the effects of an impaired UPS on Aβ pathology in vivo, transgenic APP/PS1ΔE9 mice (APPPS1) were crossed with transgenic mice expressing mutant ubiquitin (UBB), a protein-based inhibitor of the UPS. Surprisingly, the APPPS1/UBB crossbreed showed a remarkable decrease in Aβ plaque load during aging. Further analysis showed that UBB expression transiently restored PS1-NTF expression and γ-secretase activity in APPPS1 mice. Concurrently, UBB decreased levels of β-APP-CTF, which is a γ-secretase substrate. Although UBB reduced Aβ pathology in APPPS1 mice, it did not improve the behavioral deficits in these animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2018.08.011 | DOI Listing |
J Biomed Sci
September 2025
Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.
View Article and Find Full Text PDFCancer Res
September 2025
The Wistar Institute, Philadelphia, PA, United States.
Parkin is a mitochondria-associated E3 ubiquitin (Ub) ligase that mediates mitophagy and organelle quality control. More recently, Parkin has been implicated in stimulating antitumor immunity and reprogramming the tumor immune microenvironment. Here, we showed that Parkin ubiquitinates the alarmin molecule, high mobility group box-1 (HMGB1) on Lys146 (K146) using predominantly K48 linkages.
View Article and Find Full Text PDFPlant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.
The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.
View Article and Find Full Text PDFLife Sci
September 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:
AKT is a pivotal kinase involved in diverse cellular processes, including tumorigenesis and glycogen metabolism. Ubiquitination modification of AKT has been reported as a critical cellular event that regulates its kinase activity and membrane translocation; however, the molecular mechanisms involved in AKT ubiquitination remain elusive. Here, we employed loss-of-function approaches and mutants of PDK1 with altered phosphorylation and modified nucleocytoplasmic shuttling behaviors to identify the functional roles of PDK1 on the ubiquitination of AKT.
View Article and Find Full Text PDF