Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Porcine reproductive and respiratory syndrome (PRRS) causes respiratory distress in pigs, reproductive failure in breeding-age gilts and sows, and can have devastating economic consequences in domestic herds. Several PRRS vaccines are available commercially. This study compared the effectiveness of single-vaccination and revaccination schedules using the PRRS 94881 Type I modified live virus (MLV) vaccine ReproCyc® PRRS EU with no vaccination (challenge control) in protecting against a PRRS virus (PRRSV) challenge in non-pregnant gilts.

Results: Data were available from 48 gilts across three groups: a challenge control group ( = 16), which received no vaccination; a revaccination group ( = 16), which received ReproCyc® PRRS EU on Days 0 and 56; and a single vaccination group ( = 16), which received ReproCyc® PRRS EU on Day 56. All gilts were PRRSV RNA-negative (based on reverse transcription and quantitative polymerase chain reaction [RT-qPCR]) and PRRSV seronegative (based on enzyme-linked immunosorbent assay [ELISA]) at Day 0. All gilts were challenged with PRRSV strain 190136 on Day 91.Viral RNA loads in both vaccination groups were significantly reduced compared with the challenge control group on Days 98 ( < 0.0001) and 101 (P < 0.0001), indicating that vaccinated gilts were better able to respond to challenge than unvaccinated gilts. At all timepoints following challenge, mean viral RNA load and the percentage of PRRSV RNA-positive gilts were numerically higher in the single-vaccination group than in the revaccination group; these differences were statistically significant on Day 101 ( = 0.0434). Furthermore, viremia levels after challenge were significantly lower in the revaccination group than in the single-vaccination group based on median area under the curve (AUC) values for viral RNA load from Day 91 to Day 112, suggesting that revaccinated gilts had better protection from viral infection than gilts who received a single vaccination. Protection from viremia did not correlate with the proportion of seropositive gilts on Day 91. In the single-vaccination group, 94% of pigs were seropositive on Day 91 compared with 56% in the revaccination group. Vaccination was well tolerated and no safety concerns were identified.

Conclusions: Both single-vaccination and revaccination with ReproCyc® PRRS EU were effective in reducing PRRSV viremia post-challenge. These findings have important implications for herd management as both the single-vaccination and revaccination schedules protect against PRRSV challenge, with revaccination appearing to provide better protection from viremia than single vaccination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100718PMC
http://dx.doi.org/10.1186/s40813-018-0096-3DOI Listing

Publication Analysis

Top Keywords

reprocyc® prrs
12
challenge control
12
group  = 16
12
 = 16 received
12
vaccination revaccination
8
prrs
8
prrs 94881
8
porcine reproductive
8
reproductive respiratory
8
respiratory syndrome
8

Similar Publications

The status of co-infection with porcine reproductive and respiratory syndrome virus type 1 (PRRSV-1) and type 2 (PRRSV-2) in Japan is poorly understood. A case of such co-infection was identified on a PRRSV-1 non-vaccinated farm in Kagoshima prefecture. Both PRRSV-1 and PRRSV-2 genomes were simultaneously detected in pig samples by RT-PCR, and molecular analysis confirmed PRRSV-1/PRRSV-2 co-infection in individual piglets.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV), an Arteriviridae family enveloped RNA virus, is a major swine pathogen. Using yeast transformation-associated recombination (TAR) cloning, we efficiently generated infectious PRRSV and GFP-expressing clones, identifying transcription-regulating sequences as essential for stable foreign gene expression. Screening SARS-CoV-2 antivirals showed potent inhibition by the multitarget drug ribavirin, the polymerase inhibitors remdesivir and its metabolite GS-441524.

View Article and Find Full Text PDF

The porcine reproductive and respiratory syndrome (PRRS) is an endemic disease in pork-producing regions of the world, and its control remains poor. Rapid identification of PRRSV-1 and PRRSV-2 species is of great importance for molecular epidemiological surveillance of the virus. The objective of this study was the molecular characterization of the ORF5 gene that synthesizes glycosylated protein 5 (GP5) from PRRS virus detected in pig farms in Lima, Perú.

View Article and Find Full Text PDF

Tomato Roots Exhibit Development-Specific Responses to Bacterial-Derived Peptides.

Plant Cell Environ

September 2025

Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA.

To combat soilborne pathogens, roots activate pattern-triggered immunity (PTI) through pattern-recognition receptors (PRRs) that recognise microbe-associated molecular patterns (MAMPs). Root PTI pathways can differ from their above-ground counterparts and have been well-characterised in the model plant Arabidopsis thaliana but are not well-defined in crops. Gene repurposing coupled with differences in root tissues and root architecture in tomato species (Solanum lycopersicum and S.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a gastrointestinal disease characterized by inflammation of the pancreas and is associated with high rates of morbidity and mortality. The pathogenesis of AP involves a complex interplay of cellular and molecular mechanisms, including oxidative stress, damage-associated molecular patterns (DAMPs), and the infiltration of various immune cells. This review aims to provide a comprehensive overview of the molecular mechanisms underlying AP, the role of different immune cells in its progression and potential therapeutic perspectives.

View Article and Find Full Text PDF