Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acute pancreatitis (AP) is a gastrointestinal disease characterized by inflammation of the pancreas and is associated with high rates of morbidity and mortality. The pathogenesis of AP involves a complex interplay of cellular and molecular mechanisms, including oxidative stress, damage-associated molecular patterns (DAMPs), and the infiltration of various immune cells. This review aims to provide a comprehensive overview of the molecular mechanisms underlying AP, the role of different immune cells in its progression and potential therapeutic perspectives. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) and the antioxidant defense system, plays a crucial role in AP. ROS not only contribute to cell necrosis and apoptosis, but also activate immune cells and perpetuate inflammation. DAMPs released from damaged cells activate the innate immune response by interacting with pattern recognition receptors (PRRs), leading to the recruitment of immune cells such as neutrophils, macrophages and dendritic cells. These immune cells further amplify the inflammatory response by releasing cytokines and chemokines. Neutrophils are among the first responders in AP, contributing to both tissue damage and repair, as well as the double-site sword effect of neutrophil extracellular traps (NETs). Other immune cells, including T cells, dendritic cells, mast cells and monocytes/macrophages, are involved in modulating the inflammatory response and tissue repair processes. The balance between pro- and anti-inflammatory immune responses is critical in determining the severity and outcome of AP. A table of targeted drugs or substances available in clinical trials is provided at the end of this paper, with the aim of providing available opportunities for clinical treatment. Nevertheless, precise targeted drugs are still urgently needed in clinical treatment, where more in-depth research is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405227PMC
http://dx.doi.org/10.3389/fimmu.2025.1608618DOI Listing

Publication Analysis

Top Keywords

immune cells
28
oxidative stress
12
cells
12
molecular mechanisms
12
immune
9
acute pancreatitis
8
dendritic cells
8
inflammatory response
8
targeted drugs
8
clinical treatment
8

Similar Publications

Injections have been linked to feline sarcomas (feline injection-site sarcoma; FISS) and cutaneous lymphomas (cutaneous lymphoma at injection site; CLIS). Both tumors often exhibit lymphoplasmacytic inflammation ascribed to injected immunogenic material. CLIS is hypothesized to emerge from transformation and clonal expansion of lymphoid cells following persistent immune stimulation with feline leukemia virus (FeLV) reactivation and transformation.

View Article and Find Full Text PDF

Background: Intestinal cells receive incoming signals from neighboring cells and microbial communities. Upstream signaling pathways transduce these signals to reach transcription factors (TFs) that regulate gene expression. In inflammatory bowel disease (IBD), most single nucleotide polymorphisms (SNPs) are in non-coding genomic regions containing TF binding sites.

View Article and Find Full Text PDF

Dual-Mode Hybrid Discharge Plasma-Activated Injectable Hydrosol for Enhanced Immunotherapeutic Cancer Therapy.

Adv Healthc Mater

September 2025

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

Although cold atmospheric plasma is a promising therapeutic technique for tumor immunotherapy via reactive oxygen and nitrogen species (RONS), the challenges associated with the generation and delivery of these RONS hamper clinical adoption. Herein, a dual-mode hybrid discharge plasma-activated sodium alginate hydrosols (PAH) is proposed to enhance the antitumor immune response. Gaseous highly reactive RONS are generated by dual-mode hybrid plasma produced by mixed O and NO modes, which are converted into aqueous RONS in PAH via gas-liquid reactions between plasma and hydrosols.

View Article and Find Full Text PDF

Purpose: We reviewed recent advancements in the characterization of intraductal oncocytic papillary neoplasm (IOPN) of the pancreas, with a specific focus on developments in immunohistochemical markers, molecular pathology, and pathogenic mechanisms over the past ten years (2015-2024). Through comprehensive analysis of current literature, we aimed to elucidate the evolving understanding of IOPN's biological behavior and diagnostic features, while identifying potential areas for future research in this distinctive pancreatic neoplasm.

Methods: English-language articles on IOPN were searched from Pubmed from the first report of IOPN of the pancreas in 2015 to 2024.

View Article and Find Full Text PDF

It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.

View Article and Find Full Text PDF